/usr/include/Gyoto/GyotoScreen.h is in libgyoto2-dev 0.2.3-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554  | /**
 * \file GyotoScreen.h
 * \brief Description of the observer screen
 * 
 */
/*
    Copyright 2011-2013 Thibaut Paumard, Frederic Vincent
    This file is part of Gyoto.
    Gyoto is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.
    Gyoto is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.
    You should have received a copy of the GNU General Public License
    along with Gyoto.  If not, see <http://www.gnu.org/licenses/>.
 */
#ifndef __GyotoScreen_H_
#define __GyotoScreen_H_ 
#include <iostream>
#include <fstream>
#include <string>
namespace Gyoto {
  class Screen;
}
#include <GyotoDefs.h>
#include <GyotoUtils.h>
#include <GyotoSmartPointer.h>
#include <GyotoMetric.h>
#include <GyotoSpectrometer.h>
/**
 * \class Gyoto::Screen
 * \brief The camera with which the Astrobj is observed
 *
 * In the observer-centric point-of-view, the center of the Metric's
 * coordinate system is positioned relatively to the observing Screen
 * using three Euler angles and the distance (in meters). The three
 * Euler angles are:
 *   - position angle of the line of nodes (North of East);
 *   - inclination (0 = face-on);
 *   - argument of the X axis of the Metric's coordinate system.
 *  We use the z-x-z convention.
 *  See http://en.wikipedia.org/wiki/Euler_angles
 *
 * In addition, the Screen conveys:
 *   - the observing date (in geometrical units, but expect it to
 *     change to seconds in a future version);
 *   - the field-of-view of the image;
 *   - the resolution of the camera: number of pixels on each side
 *     (the camera is square);
 *   - the observing frequency.
 *
 * The scalar FreqObs defines the observing frequency for Scenery
 * quantity Intensity.
 *
 * Likewise, a Gyoto::Spectrometer defines for which frequencies
 * spectra are computed (when the Quantity Spectrum is requested in
 * the Scenery).
 * 
 * For the sake of theoreticians, there is an alternate way of
 * specifying the relative position of the Screen and Metric, by
 * specifying the 4-coordinates of the Screen in the Metric's
 * coordinate system (in that case, eerything is specified in
 * geometrical units).
 *
 * So an XML stanza for a Screen may look like that:
 * \code
 *  <Screen>
 *    <Time>       1000.      </Time>
 *    <FieldOfView>   0.3141592653589793 </FieldOfView>
 *    <Resolution>  128       </Resolution>
 *    <Distance>      1e30    </Distance>
 *    <PALN>          3.14159 </PALN>
 *    <Inclination>   2.0944  </Inclination>
 *    <Argument>     -2.0944  </Argument>
 *    <Spectrometer kind="freqlog" nsamples="10"> 17. 23. </Spectrometer> 
 *    <FreqObs>       1e20    </FreqObs>
 *  </Screen>
 * \endcode
 *
 * or like that:
 *
 * \code
 *  <Screen>
 *    <Position> 1000. 1000. 0.15. 0.</Position>
 *    <FieldOfView>   0.3141592653589793 </FieldOfView>
 *    <Resolution>  128 </Resolution>
 *    <Spectrometer kind="freqlog" nsamples="10"> 17. 23. </Spectrometer> 
 *    <FreqObs>       1e20    </FreqObs>
 *  </Screen>
 * \endcode
 *
 *
 * Units can be specified using the unit attribute in the XML file,
 * for instance:
 * 
 * \code
 *   <Distance unit="kpc"> 8 </Distance>
 * \endcode
 *
 * Possible units are (with [] noting the default):
 *  - distance: [m], geometrical, cm, km, AU, ly, pc, kpc, Mpc;
 *  - PALN, inclination, argument: [rad], deg.
 *  - frequency: [Hz], µm, GeV...
 *
 * When the distance is really large and most of the ray-tracing would
 * happen de facto in flat space, the camera is transported to a
 * location at a reasonable distance from the metric and the images
 * are scaled accordingly. The default value for this distance should
 * be fine, but it can be customized using the "dmax" attribute of the
 * "Distance" element. "dmax" is always expressed in geometrical
 * units:
 *
 * \code
 *    <Distance unit="kpc" dmax="1e7"> 8 </Distance>
 * \endcode
 *
 * Symptoms when dmax is too large include pixelization of the image
 * (neighbouring photons are numerically identical) and other
 * numerical overflows. dmax is too small when it is apparent that
 * changing it yields projection effects. dmax must be large compared
 * to rmax in the Astrobj and ideally, changing it by an order of
 * magnitude should not yield significant changes in the ray-traced
 * image.
 *
 * A mask may be used to limit ray-tracing to only some portions of
 * the field. The Scenery checks whether a mask is to be used using
 * Screen::operator()(size_t i, size_t j). The mask can be loaded from
 * a FITS file as a square image of doubles:
 * \code
 *    <Mask>maskfile.fits</Mask>
 * \endcode
 * The mask needs to be have the same size as the Screen itself, so
 * loading a mask also sets the resolution, and changing the
 * resolution after setting a mask also removes the mask.
 *
 */
class Gyoto::Screen : protected Gyoto::SmartPointee {
  friend class Gyoto::SmartPointer<Gyoto::Screen>;
 private:
  double tobs_; ///< Observing date in s
  double fov_;  ///< Field-of-view in rad
  //  double tmin_;
  size_t npix_; ///< Resolution in pixels
  /**
   * \brief Mask with 0 where the ray-tracing should not be performed
   */
  double * mask_;
  /**
   * \brief Last read or written FITS file
   *
   * Used when saving to XML: if the mask was saved or loaded from
   * FITS file, output this file name in the XML.
   */
  std::string mask_filename_;
  double distance_; ///< Distance to the observer in m
  double dmax_; ///< Maximum distance from which the photons are launched (geometrical units) 
  int anglekind_; ///< Screen angles kind (0: equatorial, 1: spherical)
  
  /**
   * The angles are position angle of the line of nodes (North of
   * East), inclination (0 = face-on), argument of X axis. We use the
   * z-x-z convention. See http://en.wikipedia.org/wiki/Euler_angles
   */
  double euler_[3]; ///< Euler angles
  double ex_[3]; ///< Sky coordinate of base X vector
  double ey_[3]; ///< Sky coordinate of base Y vector
  double ez_[3]; ///< Sky coordinate of base Z vector
  double fourvel_[4]; ///< Observer's 4-velocity
  double screen1_[4]; ///< Screen e1 vector
  double screen2_[4]; ///< Screen e2 vector
  double screen3_[4]; ///< Screen e3 vector (normal)
  double alpha0_; ///< Screen orientation (0,0) is right towards the BH
  double delta0_; ///< Screen orientation (0,0) is right towards the BH
  SmartPointer<Metric::Generic> gg_; ///< The Metric in this end of the Universe
  /**
   * \brief Gyoto::Spectrometer::Generic subclass instance used for quantities Spectrum and BinSpectrum
   */
  SmartPointer<Spectrometer::Generic> spectro_;
  /**
   * \brief Frequency at which the observer observes
   *
   * For the quantity Intensity
   */
  double freq_obs_;
 public:
   
  // Constructors - Destructor
  // -------------------------
  Screen() ; ///< Default constructor
  Screen(const Screen& ) ;                ///< Copy constructor
  Screen * clone() const; ///< Cloner
  virtual ~Screen() ;                        ///< Destructor
  
  // Mutators / assignment
  // ---------------------
  /// Set inclination etc.
  void setProjection(const double paln,
		     const double inclination,
		     const double argument);
  /// Set distance, inclination etc.
  void setProjection(const double distance,
		     const double paln,
		     const double inclination,
		     const double argument);
  /// Set distance from observer
  /**
   * \param dist Distance in meters.
   */
  void distance(double dist);
  /// Set ray-tracing maximum distance
  /**
   * \param dist Distance in geometrical units.
   */
  void dMax(double dist);
  /// Set distance from observer
  /**
   * \param dist the distance expressed in the specified unit;
   * \param unit convertible to meters
   */
  void distance(double dist, const std::string unit);
  /// Set inclination relative to line-of-sight
  /**
   * Inclination of z-axis relative to line-of-sight, or inclination
   * of equatorial plane relative to plane of the sky, in radians
   */
  void inclination(double);
  /// Set inclination relative to line-of-sight
  /**
   * Inclination of z-axis relative to line-of-sight, or inclination
   * of equatorial plane relative to plane of the sky, in specified unit.
   */
  void inclination(double, const std::string &unit);
  void PALN(double);
           ///< Set position angle of the line of nodes
  void PALN(double, const std::string &unit);
           ///< Set position angle of the line of nodes
  void argument(double);
           ///< Set angle beetwen line of nodes and X axis of object
  void argument(double, const std::string &unit);
           ///< Set angle beetwen line of nodes and X axis of object
  void spectrometer(SmartPointer<Spectrometer::Generic> spectro);
           ///< Set Screen::spectro_
  SmartPointer<Spectrometer::Generic> spectrometer() const ;
           ///< Get Screen::spectro_
  /**
   * \brief Set freq_obs_
   * \param fo double: observing frequency in Hz
   */
  void freqObs(double fo);
  /**
   * \brief Set freq_obs_
   * \param fo double: observing frequency (or wavelength) in "unit"
   * \param unit string: unit in which fo is expressed, convertable to
   * Herz or meters or energy.
   */
  void freqObs(double fo, const std::string &unit);
  /**
   * \brief Get freq_obs_.
   */
  double freqObs() const ;
  /**
   * \brief Get freq_obs_.
   * \param unit string: unit in which freq_obs_ should be returned is
   * expressed, convertable to Herz or meters or energy.
   */
  double freqObs(const std::string &unit) const;
  /// Alternative way to set projection
  /**
   * Beware : paln can not be set this way, setting later other
   * parameters change the observer's coordinates. For observationnal
   * ray-tracing purposes, prefer setProjection().
   *
   * \param[in] pos position of observer in Screen's coordinate
   * system. Content is copied.
   */
  void setObserverPos(const double pos[4]);
  void setFourVel(const double coord[4]);
  ///< Sets the observer's 4-velocity
  void setScreen1(const double coord[4]);
  ///< Sets the screen vector e1
  void setScreen2(const double coord[4]);
  ///< Sets the screen vector e2
  void setScreen3(const double coord[4]);
  ///< Sets the screen vector e3 (normal)
  // Accessors
  // ---------
  /// Get coordinate kind
  /**
   * From Screen::gg_.
   */
  int coordKind() const;
  /// Get distance from observer
  /**
   * In meters.
   */
  double distance() const;
  /// Get distance from observer
  /**
   * In specified unit.
   */
  double distance(const std::string&) const;	 ///< Get distance from observer
  /// Get maximum ray-tracing distance
  /**
   * In geometrical units.
   */
  double dMax() const;
  /// Get inclination relative to line-of-sight
  /**
   * Inclination of z-axis relative to line-of-sight, or inclination
   * of equatorial plane relative to plane of the sky, in radians.
   */
  double inclination() const;
  /// Get inclination relative to line-of-sight
  /**
   * Inclination of z-axis relative to line-of-sight, or inclination
   * of equatorial plane relative to plane of the sky, in specified unit.
   */
  double inclination(const std::string&) const;
  double PALN() const;	 ///< Get position angle of the line of nodes
  double PALN(const std::string&) const;	 ///< Get position angle of the line of nodes
  double argument() const;	 ///< Get angle between line of nodes and X axis of object
  double argument(const std::string&) const;	 ///< Get angle between line of nodes and X axis of object
  SmartPointer<Metric::Generic> metric() const; ///< Get Screen::gg_
  void metric(SmartPointer<Metric::Generic> gg); ///< Set Screen::gg_
  /// Get observing date in seconds
  double time();
  /// Get observing date in seconds
  double time(const std::string &);
  /// Set observing date in specified unit
  void time(double, const std::string &);
  /// Set observing date in seconds
  void time(double);
  /// Get Screen::fov_ in radians
  double fieldOfView();
  /// Get Screen::fov_ in specified unit
  double fieldOfView(std::string unit);
  /// Set Screen::fov_ in radians
  void fieldOfView(double);
  /// Set Screen::fov_ in specified unit
  void fieldOfView(double, const std::string &unit);
  /// Set direction of the center of the field
  void alpha0(double);
  /// Set direction of the center of the field in specified unit
  void alpha0(double, const std::string &unit);
  /// Get direction of the center of the field
  double alpha0() const;
  /// Get direction of the center of the field in specified unit
  double alpha0(std::string unit);
  /// Set direction of the center of the field
  void delta0(double);
  /// Set direction of the center of the field in specified unit
  void delta0(double, const std::string &unit);
  /// Get direction of the center of the field
  double delta0() const;
  /// Get direction of the center of the field in specified unit
  double delta0(std::string unit);
  /// Set Screen::anglekind_
  void setAnglekind(int);
  /// Get Screen::npix_
  size_t resolution();
  /// Set Screen::npix_
  void resolution(size_t);
  /// Set mask_ from array
  /**
   * mm will be copied. mm must be a square resolution x resolution
   * array. If mm==NULL, just deallocate mask_.
   */
  void mask(double const * const mm, size_t resolution=0);
  /// Retrieve const pointer to mask_
  double const * mask() const ;
# ifdef GYOTO_USE_CFITSIO
  /// Read mask_ from FITS file
  void fitsReadMask(std::string fname);
  /// Save mask_ from FITS file
  void fitsWriteMask(std::string fname);
# endif
  /// Whether this pixel should be ray-traced
  /**
   * If mask_ is not set, always true. Else, true for non-zero cells
   * in mask_.
   */
  bool operator()(size_t, size_t);
  /// 4-Position of the observer relative to the metric
  /**
   * A Screen is positioned relative to the observer with four elements:
   * Screen::distance, Screen::inclination, Screen::paln and
   * Screen::argument.
   *
   * This function returns the position of the observer relative to
   * the metric system in Screen::gg_, using these parameters. The
   * output parameter is coord.
   *
   * \param[out] coord position of the observer. Must be preallocated.
   */
  void getObserverPos(double coord[]) const;
  /// Get copy of Screen::fourvel_
  /**
   * \param[out] fourvel preallocated 4-element array
   */
  void getFourVel(double fourvel[]) const;
  /// Get copy of Screen::screen1_
  /**
   * \param[out] output preallocated 4-element array
   */
  void getScreen1(double output[]) const;
  /// Get copy of Screen::screen2_
  /**
   * \param[out] output preallocated 4-element array
   */
  void getScreen2(double output[]) const;
  /// Get copy of Screen::screen3_
  /**
   * \param[out] output preallocated 4-element array
   */
  void getScreen3(double output[]) const;
  /// Get 8-coordinate of Photon hitting screen from a given direction
  /**
   * Similar to Screen::getObserverPos() but will return in addition
   * the 4-velocity of a photon corresponding to the sky direction
   * given by x and y.
   * \param[in] x    RA (d_alpha*cos(delta)) offset in radians;
   * \param[in] y    Dec offset (d_delta) in radians; 
   * \param[out] coord position-velocity of the observer Photon. Preallocated.
   * 
   */
  void getRayCoord(double x, double y, double coord[]) const;
  /// Get 8-coordinate of Photon hitting screen pixel
  /**
   * Similar to Screen::getObserverPos() but will return in addition
   * the 4-velocity of a photon corresponding to the sky direction
   * given by x and y.
   * \param[in] i, j pixel coordinates   
   * \param[out] coord position-velocity of the Photon. Preallocated.
   * 
   */
  void getRayCoord(const size_t i, const size_t j, double coord[]) const;
  
  void coordToSky(const double pos[4], double skypos[3]) const;
  ///< Convert 4-position to 3-sky position
  void coordToXYZ(const double pos[4], double xyz[3]) const;
  ///< Convert 4-position to 3-cartesian coordinates
  void computeBaseVectors() ;
  ///< Compute base vectors according to projection parameters
  /// Display
  //  friend std::ostream& operator<<(std::ostream& , const Screen& ) ;
  std::ostream& print(std::ostream&) const ; ///< Debug helper
  std::ostream& printBaseVectors(std::ostream&) const ; ///< Debug helper
  // UDUNITS
# ifdef HAVE_UDUNITS
  /// Map "pix" and "pixel" to angular pixel width in unit system
  /**
   * "pix" or "pixel" can then be used in units.
   *
   * There is only one unit system in Gyoto: "pix" can therefore be
   * registered only for one Screen at a time. See Gyoto::Units.
   * 
   * The unit must later be unmapped with unmapPixUnit().
   */
  void mapPixUnit();
  /// Unmap "pix" and "pixel" from unit system
  /**
   * See also mapPixUnit().
   */
  void unmapPixUnit();
# endif
#ifdef GYOTO_USE_XERCES
 public:
    void fillElement(FactoryMessenger *fmp); ///< called from Factory
    /// Instanciate a Screen from XML entity 
    static   SmartPointer<Screen> Subcontractor(FactoryMessenger* fmp);
#endif
};
#endif
 |