/usr/include/Gyoto/GyotoStar.h is in libgyoto2-dev 0.2.3-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 | /**
* \file GyotoStar.h
* \brief Mass-less, spherical object following a timelike geodesic
*
* A Gyoto::Star evolves in a Gyoto::Metric following time-like
* geodesics and is a Gyoto::Astrobj::Generic suitable for
* ray-tracing.
*/
/*
Copyright 2011, 2013 Frederic Vincent, Thibaut Paumard
This file is part of Gyoto.
Gyoto is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Gyoto is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Gyoto. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef __GyotoStar_H_
#define __GyotoStar_H_
namespace Gyoto{
namespace Astrobj { class Star; }
}
#include <GyotoMetric.h>
#include <GyotoUniformSphere.h>
#include <GyotoSpectrum.h>
#include <GyotoWorldline.h>
#ifdef GYOTO_USE_XERCES
#include <GyotoRegister.h>
#endif
#include <string>
/**
* \class Gyoto::Astrobj::Star
* \brief Mass-less, spherical object following a timelike geodesic
*
* Gyoto can compute the Star's orbit in a Gyoto::Metric and perform
* ray-tracing on this target. The XML description of a Star looks
* like:
* \code
* <Astrobj kind = "Star">
* <Metric kind = "KerrBL">
* <Spin> 0. </Spin>
* </Metric>
* <Radius> 2. </Radius>
* <Velocity> 0. 0. 0.037037 </Velocity>
* <Position> 600. 9. 1.5707999999999999741 0 </Position>
* <Spectrum kind="BlackBody">
* <Temperature> 6000 </Temperature>
* </Spectrum>
* <Opacity kind="PowerLaw">
* <Exponent> 0 </Exponent>
* <Constant> 0.1 </Constant>
* </Opacity>
* <OpticallyThin/>
* </Astrobj>
* \endcode
*
* Star supports exactly the union of the parameters supported by
* Gyoto::Astrobj::UniformSphere and Gyoto::Worldline.
*
* The Metric element can be of any kind. This Metric sets the
* coordinate system.
*
* The Star is a coordinate sphere of radius Radius in solid motion.
*
* Position sets the initial 4-coordinate of the centre of the
* sphere. Velocity contains its initial 3-velocity (the time
* derivatives of the 3 space coordinates).
*
* Like many Astrobj::Generic impementations, a Star can be
* OpticallyThin or OpticallyThick.
*
* Spectrum and Opacity (if OpticallyThin) are the descriptions of two
* Gyoto::Spectrum::Generic sub-classes.
*
*/
class Gyoto::Astrobj::Star :
public Gyoto::Astrobj::UniformSphere,
public Gyoto::Worldline {
friend class Gyoto::SmartPointer<Gyoto::Astrobj::Star>;
// Data :
// -----
// Constructors - Destructor
// -------------------------
public:
/**
* Create Star object and set initial condition.
* \param gg Gyoto::SmartPointer to the Gyoto::Metric in this part of the Universe
* \param radius star radius
* \param pos initial 4-position
* \param v initial 3-velocity
*/
Star(SmartPointer<Metric::Generic> gg, double radius,
double pos[4], double v[3]) ; ///< Standard constructor
/**
* Create Star object with undefined initial conditions. One needs to
* set the coordinate system, the metric, and the initial position
* and velocity before integrating the orbit. setInititialCondition()
* can be used for that.
*/
Star(); ///< Default constructor
Star(const Star& orig); ///< Copy constructor
virtual Star * clone() const ;
virtual ~Star() ; ///< Destructor
// Accessors
// ---------
public:
virtual std::string className() const ; ///< "Star"
virtual std::string className_l() const ; ///< "star"
virtual void metric(SmartPointer<Metric::Generic>);
virtual SmartPointer<Metric::Generic> metric() const;
/**
* The mass of a Star is always 1. Stars do not perturb the
* metric. The only relevant point is that Stars are massive
* particules, their exact mass is of no importance.
*/
virtual double getMass() const ; ///< Return 1.
public:
using UniformSphere::rMax;
virtual double rMax() ;
virtual void unsetRmax();
// void setCoordSys(int); ///< Get coordinate system for integration
// int getCoordSys(); ///< Set coordinate system for integration
virtual void setInitialCondition(double coord[8]); ///< Same as Worldline::setInitialCondition(gg, coord, sys,1)
virtual int setParameter(std::string name,
std::string content,
std::string unit);
public:
#ifdef GYOTO_USE_XERCES
/**
* This implementation of UniformSphere::setParameters() uses
* wait_pos_ and init_vel_ to make sure setVelocity() is called
* after setPosition().
*/
virtual void setParameters(FactoryMessenger *fmp) ;
virtual void fillElement(FactoryMessenger *fmp) const ; ///< called from Factory
#endif
public:
/// Get the 6 Cartesian coordinates for specific dates.
/**
* This method is present in both the API of UniformSphere and
* Worldline. It is pure virtual in UniformSphere. The Star
* reimplementation is a trivial wrapper around
* Worldline::getCartesian().
*/
virtual void getCartesian(double const * const dates, size_t const n_dates,
double * const x, double * const y,
double * const z, double * const xprime=NULL,
double * const yprime=NULL, double * const zprime=NULL) ;
virtual void getVelocity(double const pos[4], double vel[4]) ;
};
#endif
|