This file is indexed.

/usr/include/Gyoto/GyotoStar.h is in libgyoto2-dev 0.2.3-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
/**
 * \file GyotoStar.h
 * \brief Mass-less, spherical object following a timelike geodesic
 *
 *  A Gyoto::Star evolves in a Gyoto::Metric following time-like
 *  geodesics and is a Gyoto::Astrobj::Generic suitable for
 *  ray-tracing.
 */

/*
    Copyright 2011, 2013 Frederic Vincent, Thibaut Paumard

    This file is part of Gyoto.

    Gyoto is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    Gyoto is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with Gyoto.  If not, see <http://www.gnu.org/licenses/>.
 */


#ifndef __GyotoStar_H_ 
#define __GyotoStar_H_ 

namespace Gyoto{
  namespace Astrobj { class Star; }
}

#include <GyotoMetric.h>
#include <GyotoUniformSphere.h>
#include <GyotoSpectrum.h>
#include <GyotoWorldline.h>

#ifdef GYOTO_USE_XERCES
#include <GyotoRegister.h>
#endif

#include <string>

/**
 * \class Gyoto::Astrobj::Star
 * \brief Mass-less, spherical object following a timelike geodesic
 *
 * Gyoto can compute the Star's orbit in a Gyoto::Metric and perform
 * ray-tracing on this target. The XML description of a Star looks
 * like:
 * \code
 * <Astrobj kind = "Star">
 *   <Metric kind = "KerrBL">
 *     <Spin> 0. </Spin>
 *   </Metric>
 *   <Radius> 2. </Radius>
 *   <Velocity> 0. 0. 0.037037 </Velocity>
 *   <Position> 600. 9. 1.5707999999999999741 0 </Position>
 *   <Spectrum kind="BlackBody">
 *     <Temperature> 6000 </Temperature>
 *   </Spectrum>
 *   <Opacity kind="PowerLaw">
 *     <Exponent> 0 </Exponent>
 *     <Constant> 0.1 </Constant>
 *   </Opacity>
 *   <OpticallyThin/>
 * </Astrobj>
 * \endcode
 *
 * Star supports exactly the union of the parameters supported by
 * Gyoto::Astrobj::UniformSphere and Gyoto::Worldline.
 * 
 * The Metric element can be of any kind. This Metric sets the
 * coordinate system.
 *
 * The Star is a coordinate sphere of radius Radius in solid motion.
 *
 * Position sets the initial 4-coordinate of the centre of the
 * sphere. Velocity contains its initial 3-velocity (the time
 * derivatives of the 3 space coordinates).
 *
 * Like many Astrobj::Generic impementations, a Star can be
 * OpticallyThin or OpticallyThick.
 *
 * Spectrum and Opacity (if OpticallyThin) are the descriptions of two
 * Gyoto::Spectrum::Generic sub-classes.
 *
 */
class Gyoto::Astrobj::Star :
  public Gyoto::Astrobj::UniformSphere,
  public Gyoto::Worldline {
  friend class Gyoto::SmartPointer<Gyoto::Astrobj::Star>;
  
  // Data : 
  // -----

  // Constructors - Destructor
  // -------------------------
 public:
 /**
  * Create Star object and set initial condition.
  * \param gg Gyoto::SmartPointer to the Gyoto::Metric in this part of the Universe
  * \param radius star radius
  * \param pos initial 4-position
  * \param v   initial 3-velocity
  */
  Star(SmartPointer<Metric::Generic> gg, double radius,
       double pos[4], double v[3]) ;                        ///< Standard constructor

 /**
  * Create Star object with undefined initial conditions. One needs to
  * set the coordinate system, the metric, and the initial position
  * and velocity before integrating the orbit. setInititialCondition()
  * can be used for that.
  */
  Star(); ///< Default constructor
  
  Star(const Star& orig); ///< Copy constructor
  virtual Star * clone() const ;

  virtual ~Star() ;                        ///< Destructor
  
  // Accessors
  // ---------
 public:
  virtual std::string className() const ; ///< "Star"
  virtual std::string className_l() const ; ///< "star"

  virtual void metric(SmartPointer<Metric::Generic>);
  virtual SmartPointer<Metric::Generic> metric() const;

  /**
   * The mass of a Star is always 1. Stars do not perturb the
   * metric. The only relevant point is that Stars are massive
   * particules, their exact mass is of no importance.
   */
  virtual double getMass() const ; ///< Return 1.

 public:
  using UniformSphere::rMax;
  virtual double rMax() ;
  virtual void unsetRmax();
  //  void setCoordSys(int); ///< Get coordinate system for integration
  //  int  getCoordSys(); ///< Set coordinate system for integration
  virtual void setInitialCondition(double coord[8]); ///< Same as Worldline::setInitialCondition(gg, coord, sys,1)

  virtual int setParameter(std::string name,
			   std::string content,
			   std::string unit);

 public:
#ifdef GYOTO_USE_XERCES
  /**
   * This implementation of UniformSphere::setParameters() uses
   * wait_pos_ and init_vel_ to make sure setVelocity() is called
   * after setPosition().
   */
  virtual void setParameters(FactoryMessenger *fmp) ;
  virtual void fillElement(FactoryMessenger *fmp) const ; ///< called from Factory
#endif

 public:
  
  /// Get the 6 Cartesian coordinates for specific dates.
  /**
   * This method is present in both the API of UniformSphere and
   * Worldline. It is pure virtual in UniformSphere. The Star
   * reimplementation is a trivial wrapper around
   * Worldline::getCartesian().
   */
  virtual void getCartesian(double const * const dates, size_t const n_dates,
		double * const x, double * const y,
		double * const z, double * const xprime=NULL,
		double * const yprime=NULL,  double * const zprime=NULL) ;
  virtual void getVelocity(double const pos[4], double vel[4]) ;

};


#endif