This file is indexed.

/usr/include/OpenEXR/ImathLineAlgo.h is in libilmbase-dev 1.0.1-6.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
// Digital Ltd. LLC
// 
// All rights reserved.
// 
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
// *       Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// *       Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// *       Neither the name of Industrial Light & Magic nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission. 
// 
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
///////////////////////////////////////////////////////////////////////////



#ifndef INCLUDED_IMATHLINEALGO_H
#define INCLUDED_IMATHLINEALGO_H

//------------------------------------------------------------------
//
//	This file contains algorithms applied to or in conjunction
//	with lines (Imath::Line). These algorithms may require
//	more headers to compile. The assumption made is that these
//	functions are called much less often than the basic line
//	functions or these functions require more support classes
//
//	Contains:
//
//	bool closestPoints(const Line<T>& line1,
//			   const Line<T>& line2,
//			   Vec3<T>& point1,
//			   Vec3<T>& point2)
//
//	bool intersect( const Line3<T> &line,
//			const Vec3<T> &v0,
//			const Vec3<T> &v1,
//			const Vec3<T> &v2,
//			Vec3<T> &pt,
//			Vec3<T> &barycentric,
//			bool &front)
//
//      V3f
//      closestVertex(const Vec3<T> &v0,
//                    const Vec3<T> &v1,
//                    const Vec3<T> &v2,
//                    const Line3<T> &l)
//
//	V3f
//	rotatePoint(const Vec3<T> p, Line3<T> l, float angle)
//
//------------------------------------------------------------------

#include "ImathLine.h"
#include "ImathVecAlgo.h"
#include "ImathFun.h"

namespace Imath {


template <class T>
bool
closestPoints
    (const Line3<T>& line1,
     const Line3<T>& line2,
     Vec3<T>& point1,
     Vec3<T>& point2)
{
    //
    // Compute point1 and point2 such that point1 is on line1, point2
    // is on line2 and the distance between point1 and point2 is minimal.
    // This function returns true if point1 and point2 can be computed,
    // or false if line1 and line2 are parallel or nearly parallel.
    // This function assumes that line1.dir and line2.dir are normalized.
    //

    Vec3<T> w = line1.pos - line2.pos;
    T d1w = line1.dir ^ w;
    T d2w = line2.dir ^ w;
    T d1d2 = line1.dir ^ line2.dir;
    T n1 = d1d2 * d2w - d1w;
    T n2 = d2w - d1d2 * d1w;
    T d = 1 - d1d2 * d1d2;
    T absD = abs (d);

    if ((absD > 1) ||
	(abs (n1) < limits<T>::max() * absD &&
	 abs (n2) < limits<T>::max() * absD))
    {
	point1 = line1 (n1 / d);
	point2 = line2 (n2 / d);
	return true;
    }
    else
    {
	return false;
    }
}


template <class T>
bool
intersect
    (const Line3<T> &line,
     const Vec3<T> &v0,
     const Vec3<T> &v1,
     const Vec3<T> &v2,
     Vec3<T> &pt,
     Vec3<T> &barycentric,
     bool &front)
{
    //
    // Given a line and a triangle (v0, v1, v2), the intersect() function
    // finds the intersection of the line and the plane that contains the
    // triangle.
    //
    // If the intersection point cannot be computed, either because the
    // line and the triangle's plane are nearly parallel or because the
    // triangle's area is very small, intersect() returns false.
    //
    // If the intersection point is outside the triangle, intersect
    // returns false.
    //
    // If the intersection point, pt, is inside the triangle, intersect()
    // computes a front-facing flag and the barycentric coordinates of
    // the intersection point, and returns true.
    //
    // The front-facing flag is true if the dot product of the triangle's
    // normal, (v2-v1)%(v1-v0), and the line's direction is negative.
    //
    // The barycentric coordinates have the following property:
    //
    //     pt = v0 * barycentric.x + v1 * barycentric.y + v2 * barycentric.z
    //

    Vec3<T> edge0 = v1 - v0;
    Vec3<T> edge1 = v2 - v1;
    Vec3<T> normal = edge1 % edge0;

    T l = normal.length();

    if (l != 0)
	normal /= l;
    else
	return false;	// zero-area triangle

    //
    // d is the distance of line.pos from the plane that contains the triangle.
    // The intersection point is at line.pos + (d/nd) * line.dir.
    //

    T d = normal ^ (v0 - line.pos);
    T nd = normal ^ line.dir;

    if (abs (nd) > 1 || abs (d) < limits<T>::max() * abs (nd))
	pt = line (d / nd);
    else
	return false;  // line and plane are nearly parallel

    //
    // Compute the barycentric coordinates of the intersection point.
    // The intersection is inside the triangle if all three barycentric
    // coordinates are between zero and one.
    //

    {
	Vec3<T> en = edge0.normalized();
	Vec3<T> a = pt - v0;
	Vec3<T> b = v2 - v0;
	Vec3<T> c = (a - en * (en ^ a));
	Vec3<T> d = (b - en * (en ^ b));
	T e = c ^ d;
	T f = d ^ d;

	if (e >= 0 && e <= f)
	    barycentric.z = e / f;
	else
	    return false; // outside
    }

    {
	Vec3<T> en = edge1.normalized();
	Vec3<T> a = pt - v1;
	Vec3<T> b = v0 - v1;
	Vec3<T> c = (a - en * (en ^ a));
	Vec3<T> d = (b - en * (en ^ b));
	T e = c ^ d;
	T f = d ^ d;

	if (e >= 0 && e <= f)
	    barycentric.x = e / f;
	else
	    return false; // outside
    }

    barycentric.y = 1 - barycentric.x - barycentric.z;

    if (barycentric.y < 0)
	return false; // outside

    front = ((line.dir ^ normal) < 0);
    return true;
}


template <class T>
Vec3<T>
closestVertex
    (const Vec3<T> &v0,
     const Vec3<T> &v1,
     const Vec3<T> &v2,
     const Line3<T> &l)
{
    Vec3<T> nearest = v0;
    T neardot       = (v0 - l.closestPointTo(v0)).length2();
    
    T tmp           = (v1 - l.closestPointTo(v1)).length2();

    if (tmp < neardot)
    {
        neardot = tmp;
        nearest = v1;
    }

    tmp = (v2 - l.closestPointTo(v2)).length2();
    if (tmp < neardot)
    {
        neardot = tmp;
        nearest = v2;
    }

    return nearest;
}


template <class T>
Vec3<T>
rotatePoint (const Vec3<T> p, Line3<T> l, T angle)
{
    //
    // Rotate the point p around the line l by the given angle.
    //

    //
    // Form a coordinate frame with <x,y,a>. The rotation is the in xy
    // plane.
    //

    Vec3<T> q = l.closestPointTo(p);
    Vec3<T> x = p - q;
    T radius = x.length();

    x.normalize();
    Vec3<T> y = (x % l.dir).normalize();

    T cosangle = Math<T>::cos(angle);
    T sinangle = Math<T>::sin(angle);

    Vec3<T> r = q + x * radius * cosangle + y * radius * sinangle; 

    return r;
}


} // namespace Imath

#endif