This file is indexed.

/usr/include/OpenEXR/ImathPlane.h is in libilmbase-dev 1.0.1-6.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
// Digital Ltd. LLC
// 
// All rights reserved.
// 
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
// *       Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// *       Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// *       Neither the name of Industrial Light & Magic nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission. 
// 
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
///////////////////////////////////////////////////////////////////////////



#ifndef INCLUDED_IMATHPLANE_H
#define INCLUDED_IMATHPLANE_H

//----------------------------------------------------------------------
//
//	template class Plane3
//
//	The Imath::Plane3<> class represents a half space, so the
//	normal may point either towards or away from origin.  The
//	plane P can be represented by Imath::Plane3 as either p or -p
//	corresponding to the two half-spaces on either side of the
//	plane. Any function which computes a distance will return
//	either negative or positive values for the distance indicating
//	which half-space the point is in. Note that reflection, and
//	intersection functions will operate as expected.
//
//----------------------------------------------------------------------

#include "ImathVec.h"
#include "ImathLine.h"

namespace Imath {


template <class T>
class Plane3
{
  public:

    Vec3<T>			normal;
    T				distance;

    Plane3() {}
    Plane3(const Vec3<T> &normal, T distance);
    Plane3(const Vec3<T> &point, const Vec3<T> &normal);
    Plane3(const Vec3<T> &point1,
	   const Vec3<T> &point2,
	   const Vec3<T> &point3);

    //----------------------
    //	Various set methods
    //----------------------

    void                        set(const Vec3<T> &normal,
				    T distance);

    void                        set(const Vec3<T> &point,
				    const Vec3<T> &normal);

    void                        set(const Vec3<T> &point1,
				    const Vec3<T> &point2,
				    const Vec3<T> &point3 );

    //----------------------
    //	Utilities
    //----------------------

    bool                        intersect(const Line3<T> &line,
                                          Vec3<T> &intersection) const;

    bool                        intersectT(const Line3<T> &line,
					   T &parameter) const;

    T				distanceTo(const Vec3<T> &) const;

    Vec3<T>                     reflectPoint(const Vec3<T> &) const;
    Vec3<T>                     reflectVector(const Vec3<T> &) const;
};


//--------------------
// Convenient typedefs
//--------------------

typedef Plane3<float> Plane3f;
typedef Plane3<double> Plane3d;


//---------------
// Implementation
//---------------

template <class T>
inline Plane3<T>::Plane3(const Vec3<T> &p0,
			 const Vec3<T> &p1,
			 const Vec3<T> &p2)
{
    set(p0,p1,p2);
}

template <class T>
inline Plane3<T>::Plane3(const Vec3<T> &n, T d)
{
    set(n, d);
}

template <class T>
inline Plane3<T>::Plane3(const Vec3<T> &p, const Vec3<T> &n)
{
    set(p, n);
}

template <class T>
inline void Plane3<T>::set(const Vec3<T>& point1,
			   const Vec3<T>& point2,
			   const Vec3<T>& point3)
{
    normal = (point2 - point1) % (point3 - point1);
    normal.normalize();
    distance = normal ^ point1;
}

template <class T>
inline void Plane3<T>::set(const Vec3<T>& point, const Vec3<T>& n)
{
    normal = n;
    normal.normalize();
    distance = normal ^ point;
}

template <class T>
inline void Plane3<T>::set(const Vec3<T>& n, T d)
{
    normal = n;
    normal.normalize();
    distance = d;
}

template <class T>
inline T Plane3<T>::distanceTo(const Vec3<T> &point) const
{
    return (point ^ normal) - distance;
}

template <class T>
inline Vec3<T> Plane3<T>::reflectPoint(const Vec3<T> &point) const
{
    return normal * distanceTo(point) * -2.0 + point;
}


template <class T>
inline Vec3<T> Plane3<T>::reflectVector(const Vec3<T> &v) const
{
    return normal * (normal ^ v)  * 2.0 - v;
}


template <class T>
inline bool Plane3<T>::intersect(const Line3<T>& line, Vec3<T>& point) const
{
    T d = normal ^ line.dir;
    if ( d == 0.0 ) return false;
    T t = - ((normal ^ line.pos) - distance) /  d;
    point = line(t);
    return true;
}

template <class T>
inline bool Plane3<T>::intersectT(const Line3<T>& line, T &t) const
{
    T d = normal ^ line.dir;
    if ( d == 0.0 ) return false;
    t = - ((normal ^ line.pos) - distance) /  d;
    return true;
}

template<class T>
std::ostream &operator<< (std::ostream &o, const Plane3<T> &plane)
{
    return o << "(" << plane.normal << ", " << plane.distance
	     << ")";
}

template<class T>
Plane3<T> operator* (const Plane3<T> &plane, const Matrix44<T> &M)
{
    //                        T
    //	                    -1
    //	Could also compute M    but that would suck.
    //

    Vec3<T> dir1   = Vec3<T> (1, 0, 0) % plane.normal;
    T dir1Len      = dir1 ^ dir1;

    Vec3<T> tmp    = Vec3<T> (0, 1, 0) % plane.normal;
    T tmpLen       = tmp ^ tmp;

    if (tmpLen > dir1Len)
    {
	dir1      = tmp;
	dir1Len   = tmpLen;
    }

    tmp            = Vec3<T> (0, 0, 1) % plane.normal;
    tmpLen         = tmp ^ tmp;

    if (tmpLen > dir1Len)
    {
	dir1      = tmp;
    }

    Vec3<T> dir2   = dir1 % plane.normal;
    Vec3<T> point  = plane.distance * plane.normal;

    return Plane3<T> ( point         * M,
		      (point + dir2) * M,
		      (point + dir1) * M );
}

template<class T>
Plane3<T> operator- (const Plane3<T> &plane)
{
    return Plane3<T>(-plane.normal,-plane.distance);
}


} // namespace Imath

#endif