This file is indexed.

/usr/include/OpenEXR/half.h is in libilmbase-dev 1.0.1-6.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
// Digital Ltd. LLC
// 
// All rights reserved.
// 
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
// *       Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// *       Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// *       Neither the name of Industrial Light & Magic nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission. 
// 
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
///////////////////////////////////////////////////////////////////////////

// Primary authors:
//     Florian Kainz <kainz@ilm.com>
//     Rod Bogart <rgb@ilm.com>

//---------------------------------------------------------------------------
//
//	half -- a 16-bit floating point number class:
//
//	Type half can represent positive and negative numbers whose
//	magnitude is between roughly 6.1e-5 and 6.5e+4 with a relative
//	error of 9.8e-4; numbers smaller than 6.1e-5 can be represented
//	with an absolute error of 6.0e-8.  All integers from -2048 to
//	+2048 can be represented exactly.
//
//	Type half behaves (almost) like the built-in C++ floating point
//	types.  In arithmetic expressions, half, float and double can be
//	mixed freely.  Here are a few examples:
//
//	    half a (3.5);
//	    float b (a + sqrt (a));
//	    a += b;
//	    b += a;
//	    b = a + 7;
//
//	Conversions from half to float are lossless; all half numbers
//	are exactly representable as floats.
//
//	Conversions from float to half may not preserve the float's
//	value exactly.  If a float is not representable as a half, the
//	float value is rounded to the nearest representable half.  If
//	a float value is exactly in the middle between the two closest
//	representable half values, then the float value is rounded to
//	the half with the greater magnitude.
//
//	Overflows during float-to-half conversions cause arithmetic
//	exceptions.  An overflow occurs when the float value to be
//	converted is too large to be represented as a half, or if the
//	float value is an infinity or a NAN.
//
//	The implementation of type half makes the following assumptions
//	about the implementation of the built-in C++ types:
//
//	    float is an IEEE 754 single-precision number
//	    sizeof (float) == 4
//	    sizeof (unsigned int) == sizeof (float)
//	    alignof (unsigned int) == alignof (float)
//	    sizeof (unsigned short) == 2
//
//---------------------------------------------------------------------------

#ifndef _HALF_H_
#define _HALF_H_

#include <iostream>

class half
{
  public:

    //-------------
    // Constructors
    //-------------

    half ();			// no initialization
    half (float f);


    //--------------------
    // Conversion to float
    //--------------------

    operator		float () const;


    //------------
    // Unary minus
    //------------

    half		operator - () const;


    //-----------
    // Assignment
    //-----------

    half &		operator = (half  h);
    half &		operator = (float f);

    half &		operator += (half  h);
    half &		operator += (float f);

    half &		operator -= (half  h);
    half &		operator -= (float f);

    half &		operator *= (half  h);
    half &		operator *= (float f);

    half &		operator /= (half  h);
    half &		operator /= (float f);


    //---------------------------------------------------------
    // Round to n-bit precision (n should be between 0 and 10).
    // After rounding, the significand's 10-n least significant
    // bits will be zero.
    //---------------------------------------------------------

    half		round (unsigned int n) const;


    //--------------------------------------------------------------------
    // Classification:
    //
    //	h.isFinite()		returns true if h is a normalized number,
    //				a denormalized number or zero
    //
    //	h.isNormalized()	returns true if h is a normalized number
    //
    //	h.isDenormalized()	returns true if h is a denormalized number
    //
    //	h.isZero()		returns true if h is zero
    //
    //	h.isNan()		returns true if h is a NAN
    //
    //	h.isInfinity()		returns true if h is a positive
    //				or a negative infinity
    //
    //	h.isNegative()		returns true if the sign bit of h
    //				is set (negative)
    //--------------------------------------------------------------------

    bool		isFinite () const;
    bool		isNormalized () const;
    bool		isDenormalized () const;
    bool		isZero () const;
    bool		isNan () const;
    bool		isInfinity () const;
    bool		isNegative () const;


    //--------------------------------------------
    // Special values
    //
    //	posInf()	returns +infinity
    //
    //	negInf()	returns -infinity
    //
    //	qNan()		returns a NAN with the bit
    //			pattern 0111111111111111
    //
    //	sNan()		returns a NAN with the bit
    //			pattern 0111110111111111
    //--------------------------------------------

    static half		posInf ();
    static half		negInf ();
    static half		qNan ();
    static half		sNan ();


    //--------------------------------------
    // Access to the internal representation
    //--------------------------------------

    unsigned short	bits () const;
    void		setBits (unsigned short bits);


  public:

    union uif
    {
	unsigned int	i;
	float		f;
    };

  private:

    static short	convert (int i);
    static float	overflow ();

    unsigned short	_h;

    //---------------------------------------------------
    // Windows dynamic libraries don't like static
    // member variables.
    //---------------------------------------------------
#ifndef OPENEXR_DLL
    static const uif	        _toFloat[1 << 16];
    static const unsigned short _eLut[1 << 9];
#endif
};

#if defined(OPENEXR_DLL)
    //--------------------------------------
    // Lookup tables defined for Windows DLL
    //--------------------------------------
    #if defined(HALF_EXPORTS)
        extern __declspec(dllexport) half::uif		_toFloat[1 << 16];
        extern __declspec(dllexport) unsigned short	_eLut[1 << 9];
    #else
        extern __declspec(dllimport) half::uif		_toFloat[1 << 16];
        extern __declspec(dllimport) unsigned short	_eLut[1 << 9];
    #endif
#endif


//-----------
// Stream I/O
//-----------

std::ostream &		operator << (std::ostream &os, half  h);
std::istream &		operator >> (std::istream &is, half &h);


//----------
// Debugging
//----------

void			printBits   (std::ostream &os, half  h);
void			printBits   (std::ostream &os, float f);
void			printBits   (char  c[19], half  h);
void			printBits   (char  c[35], float f);


//-------------------------------------------------------------------------
// Limits
//
// Visual C++ will complain if HALF_MIN, HALF_NRM_MIN etc. are not float
// constants, but at least one other compiler (gcc 2.96) produces incorrect
// results if they are.
//-------------------------------------------------------------------------

#if (defined _WIN32 || defined _WIN64) && defined _MSC_VER

  #define HALF_MIN	5.96046448e-08f	// Smallest positive half

  #define HALF_NRM_MIN	6.10351562e-05f	// Smallest positive normalized half

  #define HALF_MAX	65504.0f	// Largest positive half

  #define HALF_EPSILON	0.00097656f	// Smallest positive e for which
					// half (1.0 + e) != half (1.0)
#else

  #define HALF_MIN	5.96046448e-08	// Smallest positive half

  #define HALF_NRM_MIN	6.10351562e-05	// Smallest positive normalized half

  #define HALF_MAX	65504.0		// Largest positive half

  #define HALF_EPSILON	0.00097656	// Smallest positive e for which
					// half (1.0 + e) != half (1.0)
#endif


#define HALF_MANT_DIG	11		// Number of digits in mantissa
					// (significand + hidden leading 1)

#define HALF_DIG	2		// Number of base 10 digits that
					// can be represented without change

#define HALF_RADIX	2		// Base of the exponent

#define HALF_MIN_EXP	-13		// Minimum negative integer such that
					// HALF_RADIX raised to the power of
					// one less than that integer is a
					// normalized half

#define HALF_MAX_EXP	16		// Maximum positive integer such that
					// HALF_RADIX raised to the power of
					// one less than that integer is a
					// normalized half

#define HALF_MIN_10_EXP	-4		// Minimum positive integer such
					// that 10 raised to that power is
					// a normalized half

#define HALF_MAX_10_EXP	4		// Maximum positive integer such
					// that 10 raised to that power is
					// a normalized half


//---------------------------------------------------------------------------
//
// Implementation --
//
// Representation of a float:
//
//	We assume that a float, f, is an IEEE 754 single-precision
//	floating point number, whose bits are arranged as follows:
//
//	    31 (msb)
//	    | 
//	    | 30     23
//	    | |      | 
//	    | |      | 22                    0 (lsb)
//	    | |      | |                     |
//	    X XXXXXXXX XXXXXXXXXXXXXXXXXXXXXXX
//
//	    s e        m
//
//	S is the sign-bit, e is the exponent and m is the significand.
//
//	If e is between 1 and 254, f is a normalized number:
//
//	            s    e-127
//	    f = (-1)  * 2      * 1.m
//
//	If e is 0, and m is not zero, f is a denormalized number:
//
//	            s    -126
//	    f = (-1)  * 2      * 0.m
//
//	If e and m are both zero, f is zero:
//
//	    f = 0.0
//
//	If e is 255, f is an "infinity" or "not a number" (NAN),
//	depending on whether m is zero or not.
//
//	Examples:
//
//	    0 00000000 00000000000000000000000 = 0.0
//	    0 01111110 00000000000000000000000 = 0.5
//	    0 01111111 00000000000000000000000 = 1.0
//	    0 10000000 00000000000000000000000 = 2.0
//	    0 10000000 10000000000000000000000 = 3.0
//	    1 10000101 11110000010000000000000 = -124.0625
//	    0 11111111 00000000000000000000000 = +infinity
//	    1 11111111 00000000000000000000000 = -infinity
//	    0 11111111 10000000000000000000000 = NAN
//	    1 11111111 11111111111111111111111 = NAN
//
// Representation of a half:
//
//	Here is the bit-layout for a half number, h:
//
//	    15 (msb)
//	    | 
//	    | 14  10
//	    | |   |
//	    | |   | 9        0 (lsb)
//	    | |   | |        |
//	    X XXXXX XXXXXXXXXX
//
//	    s e     m
//
//	S is the sign-bit, e is the exponent and m is the significand.
//
//	If e is between 1 and 30, h is a normalized number:
//
//	            s    e-15
//	    h = (-1)  * 2     * 1.m
//
//	If e is 0, and m is not zero, h is a denormalized number:
//
//	            S    -14
//	    h = (-1)  * 2     * 0.m
//
//	If e and m are both zero, h is zero:
//
//	    h = 0.0
//
//	If e is 31, h is an "infinity" or "not a number" (NAN),
//	depending on whether m is zero or not.
//
//	Examples:
//
//	    0 00000 0000000000 = 0.0
//	    0 01110 0000000000 = 0.5
//	    0 01111 0000000000 = 1.0
//	    0 10000 0000000000 = 2.0
//	    0 10000 1000000000 = 3.0
//	    1 10101 1111000001 = -124.0625
//	    0 11111 0000000000 = +infinity
//	    1 11111 0000000000 = -infinity
//	    0 11111 1000000000 = NAN
//	    1 11111 1111111111 = NAN
//
// Conversion:
//
//	Converting from a float to a half requires some non-trivial bit
//	manipulations.  In some cases, this makes conversion relatively
//	slow, but the most common case is accelerated via table lookups.
//
//	Converting back from a half to a float is easier because we don't
//	have to do any rounding.  In addition, there are only 65536
//	different half numbers; we can convert each of those numbers once
//	and store the results in a table.  Later, all conversions can be
//	done using only simple table lookups.
//
//---------------------------------------------------------------------------


//--------------------
// Simple constructors
//--------------------

inline
half::half ()
{
    // no initialization
}


//----------------------------
// Half-from-float constructor
//----------------------------

inline
half::half (float f)
{
    uif x;

    x.f = f;

    if (f == 0)
    {
	//
	// Common special case - zero.
	// Preserve the zero's sign bit.
	//

	_h = (x.i >> 16);
    }
    else
    {
	//
	// We extract the combined sign and exponent, e, from our
	// floating-point number, f.  Then we convert e to the sign
	// and exponent of the half number via a table lookup.
	//
	// For the most common case, where a normalized half is produced,
	// the table lookup returns a non-zero value; in this case, all
	// we have to do is round f's significand to 10 bits and combine
	// the result with e.
	//
	// For all other cases (overflow, zeroes, denormalized numbers
	// resulting from underflow, infinities and NANs), the table
	// lookup returns zero, and we call a longer, non-inline function
	// to do the float-to-half conversion.
	//

	register int e = (x.i >> 23) & 0x000001ff;

	e = _eLut[e];

	if (e)
	{
	    //
	    // Simple case - round the significand, m, to 10
	    // bits and combine it with the sign and exponent.
	    //

	    register int m = x.i & 0x007fffff;
	    _h = e + ((m + 0x00000fff + ((m >> 13) & 1)) >> 13);
	}
	else
	{
	    //
	    // Difficult case - call a function.
	    //

	    _h = convert (x.i);
	}
    }
}


//------------------------------------------
// Half-to-float conversion via table lookup
//------------------------------------------

inline
half::operator float () const
{
    return _toFloat[_h].f;
}


//-------------------------
// Round to n-bit precision
//-------------------------

inline half
half::round (unsigned int n) const
{
    //
    // Parameter check.
    //

    if (n >= 10)
	return *this;

    //
    // Disassemble h into the sign, s,
    // and the combined exponent and significand, e.
    //

    unsigned short s = _h & 0x8000;
    unsigned short e = _h & 0x7fff;

    //
    // Round the exponent and significand to the nearest value
    // where ones occur only in the (10-n) most significant bits.
    // Note that the exponent adjusts automatically if rounding
    // up causes the significand to overflow.
    //

    e >>= 9 - n;
    e  += e & 1;
    e <<= 9 - n;

    //
    // Check for exponent overflow.
    //

    if (e >= 0x7c00)
    {
	//
	// Overflow occurred -- truncate instead of rounding.
	//

	e = _h;
	e >>= 10 - n;
	e <<= 10 - n;
    }

    //
    // Put the original sign bit back.
    //

    half h;
    h._h = s | e;

    return h;
}


//-----------------------
// Other inline functions
//-----------------------

inline half	
half::operator - () const
{
    half h;
    h._h = _h ^ 0x8000;
    return h;
}


inline half &
half::operator = (half h)
{
    _h = h._h;
    return *this;
}


inline half &
half::operator = (float f)
{
    *this = half (f);
    return *this;
}


inline half &
half::operator += (half h)
{
    *this = half (float (*this) + float (h));
    return *this;
}


inline half &
half::operator += (float f)
{
    *this = half (float (*this) + f);
    return *this;
}


inline half &
half::operator -= (half h)
{
    *this = half (float (*this) - float (h));
    return *this;
}


inline half &
half::operator -= (float f)
{
    *this = half (float (*this) - f);
    return *this;
}


inline half &
half::operator *= (half h)
{
    *this = half (float (*this) * float (h));
    return *this;
}


inline half &
half::operator *= (float f)
{
    *this = half (float (*this) * f);
    return *this;
}


inline half &
half::operator /= (half h)
{
    *this = half (float (*this) / float (h));
    return *this;
}


inline half &
half::operator /= (float f)
{
    *this = half (float (*this) / f);
    return *this;
}


inline bool	
half::isFinite () const
{
    unsigned short e = (_h >> 10) & 0x001f;
    return e < 31;
}


inline bool
half::isNormalized () const
{
    unsigned short e = (_h >> 10) & 0x001f;
    return e > 0 && e < 31;
}


inline bool
half::isDenormalized () const
{
    unsigned short e = (_h >> 10) & 0x001f;
    unsigned short m =  _h & 0x3ff;
    return e == 0 && m != 0;
}


inline bool
half::isZero () const
{
    return (_h & 0x7fff) == 0;
}


inline bool
half::isNan () const
{
    unsigned short e = (_h >> 10) & 0x001f;
    unsigned short m =  _h & 0x3ff;
    return e == 31 && m != 0;
}


inline bool
half::isInfinity () const
{
    unsigned short e = (_h >> 10) & 0x001f;
    unsigned short m =  _h & 0x3ff;
    return e == 31 && m == 0;
}


inline bool	
half::isNegative () const
{
    return (_h & 0x8000) != 0;
}


inline half
half::posInf ()
{
    half h;
    h._h = 0x7c00;
    return h;
}


inline half
half::negInf ()
{
    half h;
    h._h = 0xfc00;
    return h;
}


inline half
half::qNan ()
{
    half h;
    h._h = 0x7fff;
    return h;
}


inline half
half::sNan ()
{
    half h;
    h._h = 0x7dff;
    return h;
}


inline unsigned short
half::bits () const
{
    return _h;
}


inline void
half::setBits (unsigned short bits)
{
    _h = bits;
}

#undef HALF_EXPORT_CONST

#endif