This file is indexed.

/usr/include/jellyfish/binary_dumper.hpp is in libjellyfish-2.0-dev 2.1.4-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
/*  This file is part of Jellyfish.

    Jellyfish is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    Jellyfish is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with Jellyfish.  If not, see <http://www.gnu.org/licenses/>.
*/

#ifndef __JELLYFISH_BINARY_DUMPER_HPP__
#define __JELLYFISH_BINARY_DUMPER_HPP__

#include <iostream>
#include <cmath>

#include <jellyfish/sorted_dumper.hpp>

namespace jellyfish {
template<typename Key, typename Val>
class binary_writer {
  int val_len_;
  Val max_val_;
  int key_len_;                 // length of output key field in bytes

public:
  binary_writer(int val_len,   // length of value field in bytes
                int key_len) : // length of key field in bits
    val_len_(val_len),
    max_val_(((Val)1 << (8 * val_len)) - 1),
    key_len_(key_len / 8 + (key_len % 8 != 0))
  { }

  int val_len() const { return val_len_; }
  Val max_val() const { return max_val_; }
  int key_len() const { return key_len_; }

  void write(std::ostream& out, const Key& key, const Val val) {
    out.write((const char*)key.data(), key_len_);
    Val v = std::min(max_val_, val);
    out.write((const char*)&v, val_len_);
  }
};

/// Dump a hash array in sorted binary format. The key/value pairs are
/// written in a sorted list according to the hash function order. The
/// k-mer and count are written in binary, byte aligned.
template<typename storage_t>
class binary_dumper : public sorted_dumper<binary_dumper<storage_t>, storage_t> {
  typedef sorted_dumper<binary_dumper<storage_t>, storage_t> super;
  binary_writer<typename super::key_type, uint64_t> writer;

public:
  static const char* format;

  binary_dumper(int val_len, // length of value field in bytes
                int key_len, // length of key field in bits
                int nb_threads, const char* file_prefix,
                file_header* header = 0) :
    super(nb_threads, file_prefix, header),
    writer(val_len, key_len)
  { }

  virtual void _dump(storage_t* ary) {
    if(super::header_) {
      super::header_->update_from_ary(*ary);
      super::header_->format(format);
      super::header_->counter_len(writer.val_len());
    }
    super::_dump(ary);
  }

  void write_key_value_pair(std::ostream& out, typename super::heap_item item) {
    writer.write(out, item->key_, item->val_);
  }
};
template<typename storage_t>
const char* jellyfish::binary_dumper<storage_t>::format = "binary/sorted";

/// Reader of the format written by binary_dumper. Behaves like an
/// iterator (has next() method which behaves similarly to the next()
/// method of the hash array).
/// The header should be of format binary/sorted, but no check is made.
template<typename Key, typename Val>
class binary_reader {
  std::istream&                 is_;
  const int                     val_len_;
  Key                           key_;
  Val                           val_;
  const RectangularBinaryMatrix m_;
  const size_t                  size_mask_;

public:
  binary_reader(std::istream& is, // stream containing data (past any header)
                file_header* header) :  // header which contains counter_len, matrix, size and key_len
    is_(is), val_len_(header->counter_len()), key_(header->key_len() / 2),
    m_(header->matrix()),
    size_mask_(header->size() - 1)
  { }

  const Key& key() const { return key_; }
  const Val& val() const { return val_; }
  size_t pos() const { return m_.times(key_) & size_mask_; }

  bool next() {
    key_.template read<1>(is_);
    val_ = 0;
    is_.read((char*)&val_, val_len_);
    return is_.good();
  }
};

template<typename Key, typename Val>
class binary_query_base {
  const char* const             data_;
  const unsigned int            val_len_; // In bytes
  const unsigned int            key_len_; // In bytes
  const RectangularBinaryMatrix m_;
  const size_t                  mask_;
  const size_t                  record_len_;
  const size_t                  last_id_;
  Key                           first_key_, last_key_;
  mutable Key                   mid_key_;
  uint64_t                      first_pos_, last_pos_;

public:
  // key_len passed in bits
  binary_query_base(const char* data, unsigned int key_len, unsigned int val_len, const RectangularBinaryMatrix& m, size_t mask,
                    size_t size) :
    data_(data),
    val_len_(val_len),
    key_len_(key_len / 8 + (key_len % 8 != 0)),
    m_(m),
    mask_(mask),
    record_len_(val_len + key_len_),
    last_id_(size / record_len_),
    first_key_(key_len / 2),
    last_key_(key_len / 2),
    mid_key_(key_len / 2)
  {
    if(size % record_len_ != 0)
      throw std::length_error(err::msg() << "Size of database (" << size << ") must be a multiple of the length of a record ("
                              << record_len_ << ")");
    key_at(0, first_key_);
    first_pos_ = key_pos(first_key_);
    key_at(last_id_ - 1, last_key_);
    last_pos_  = key_pos(last_key_);
  }

  bool val_id(const Key& key,  Val* res, uint64_t* id) const {
    if(last_id_ == 0) return false;
    uint64_t first     = 0;
    uint64_t last      = last_id_;
    uint64_t first_pos = first_pos_;
    uint64_t last_pos  = last_pos_;
    const uint64_t pos = key_pos(key);
    uint64_t cid       = 0;
    if(key == first_key_) goto found;
    cid = last_id_ - 1;
    if(key == last_key_) goto found;
    if(pos < first_pos_ || pos > last_pos_) return false;

    // First a guided binary search
    for(uint64_t diff = last - first; diff >= 8; diff = last - first) {
      cid = first + lrint(diff * ((double)(pos - first_pos) / (double)(last_pos - first_pos)));
      cid = std::max(first + 1, cid);
      cid = std::min(cid, last - 1);
      key_at(cid, mid_key_);
      if(key == mid_key_) goto found;
      uint64_t mid_pos = key_pos(mid_key_);
      if(mid_pos > pos || (mid_pos == pos && mid_key_ > key)) {
        last     = cid;
        last_pos = mid_pos;
      } else {
        first     = cid;
        first_pos = mid_pos;
      }
    }

    // Then a linear search (avoids matrix computation)
    for(cid = first + 1; cid < last; ++cid) {
      key_at(cid, mid_key_);
      if(key == mid_key_) goto found;
    }
    return false;

  found:
    val_at(cid, res);
    *id = cid;
    return true;
  }

  Val operator[](const Key& key) const {
    Val res;
    uint64_t id;
    if(!val_id(key, &res, &id))
      return 0;
    return res;
  }

  inline Val check(const Key& key) const { return (*this)[key]; }

protected:
  void key_at(size_t id, Key& key) const {
    memcpy(key.data__(), data_ + id * record_len_, key_len_);
    key.clean_msw();
  }
  void val_at(size_t id, Val* val) const {
    *val = 0;
    memcpy(val, data_ + id * record_len_ + key_len_, val_len_);
  }
  uint64_t key_pos(const Key& key) const {
    return m_.times(key) & mask_;
  }
};
}

#endif /* __JELLYFISH_BINARY_DUMPER_HPP__ */