/usr/include/jellyfish/binary_dumper.hpp is in libjellyfish-2.0-dev 2.1.4-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 | /* This file is part of Jellyfish.
Jellyfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Jellyfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Jellyfish. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef __JELLYFISH_BINARY_DUMPER_HPP__
#define __JELLYFISH_BINARY_DUMPER_HPP__
#include <iostream>
#include <cmath>
#include <jellyfish/sorted_dumper.hpp>
namespace jellyfish {
template<typename Key, typename Val>
class binary_writer {
int val_len_;
Val max_val_;
int key_len_; // length of output key field in bytes
public:
binary_writer(int val_len, // length of value field in bytes
int key_len) : // length of key field in bits
val_len_(val_len),
max_val_(((Val)1 << (8 * val_len)) - 1),
key_len_(key_len / 8 + (key_len % 8 != 0))
{ }
int val_len() const { return val_len_; }
Val max_val() const { return max_val_; }
int key_len() const { return key_len_; }
void write(std::ostream& out, const Key& key, const Val val) {
out.write((const char*)key.data(), key_len_);
Val v = std::min(max_val_, val);
out.write((const char*)&v, val_len_);
}
};
/// Dump a hash array in sorted binary format. The key/value pairs are
/// written in a sorted list according to the hash function order. The
/// k-mer and count are written in binary, byte aligned.
template<typename storage_t>
class binary_dumper : public sorted_dumper<binary_dumper<storage_t>, storage_t> {
typedef sorted_dumper<binary_dumper<storage_t>, storage_t> super;
binary_writer<typename super::key_type, uint64_t> writer;
public:
static const char* format;
binary_dumper(int val_len, // length of value field in bytes
int key_len, // length of key field in bits
int nb_threads, const char* file_prefix,
file_header* header = 0) :
super(nb_threads, file_prefix, header),
writer(val_len, key_len)
{ }
virtual void _dump(storage_t* ary) {
if(super::header_) {
super::header_->update_from_ary(*ary);
super::header_->format(format);
super::header_->counter_len(writer.val_len());
}
super::_dump(ary);
}
void write_key_value_pair(std::ostream& out, typename super::heap_item item) {
writer.write(out, item->key_, item->val_);
}
};
template<typename storage_t>
const char* jellyfish::binary_dumper<storage_t>::format = "binary/sorted";
/// Reader of the format written by binary_dumper. Behaves like an
/// iterator (has next() method which behaves similarly to the next()
/// method of the hash array).
/// The header should be of format binary/sorted, but no check is made.
template<typename Key, typename Val>
class binary_reader {
std::istream& is_;
const int val_len_;
Key key_;
Val val_;
const RectangularBinaryMatrix m_;
const size_t size_mask_;
public:
binary_reader(std::istream& is, // stream containing data (past any header)
file_header* header) : // header which contains counter_len, matrix, size and key_len
is_(is), val_len_(header->counter_len()), key_(header->key_len() / 2),
m_(header->matrix()),
size_mask_(header->size() - 1)
{ }
const Key& key() const { return key_; }
const Val& val() const { return val_; }
size_t pos() const { return m_.times(key_) & size_mask_; }
bool next() {
key_.template read<1>(is_);
val_ = 0;
is_.read((char*)&val_, val_len_);
return is_.good();
}
};
template<typename Key, typename Val>
class binary_query_base {
const char* const data_;
const unsigned int val_len_; // In bytes
const unsigned int key_len_; // In bytes
const RectangularBinaryMatrix m_;
const size_t mask_;
const size_t record_len_;
const size_t last_id_;
Key first_key_, last_key_;
mutable Key mid_key_;
uint64_t first_pos_, last_pos_;
public:
// key_len passed in bits
binary_query_base(const char* data, unsigned int key_len, unsigned int val_len, const RectangularBinaryMatrix& m, size_t mask,
size_t size) :
data_(data),
val_len_(val_len),
key_len_(key_len / 8 + (key_len % 8 != 0)),
m_(m),
mask_(mask),
record_len_(val_len + key_len_),
last_id_(size / record_len_),
first_key_(key_len / 2),
last_key_(key_len / 2),
mid_key_(key_len / 2)
{
if(size % record_len_ != 0)
throw std::length_error(err::msg() << "Size of database (" << size << ") must be a multiple of the length of a record ("
<< record_len_ << ")");
key_at(0, first_key_);
first_pos_ = key_pos(first_key_);
key_at(last_id_ - 1, last_key_);
last_pos_ = key_pos(last_key_);
}
bool val_id(const Key& key, Val* res, uint64_t* id) const {
if(last_id_ == 0) return false;
uint64_t first = 0;
uint64_t last = last_id_;
uint64_t first_pos = first_pos_;
uint64_t last_pos = last_pos_;
const uint64_t pos = key_pos(key);
uint64_t cid = 0;
if(key == first_key_) goto found;
cid = last_id_ - 1;
if(key == last_key_) goto found;
if(pos < first_pos_ || pos > last_pos_) return false;
// First a guided binary search
for(uint64_t diff = last - first; diff >= 8; diff = last - first) {
cid = first + lrint(diff * ((double)(pos - first_pos) / (double)(last_pos - first_pos)));
cid = std::max(first + 1, cid);
cid = std::min(cid, last - 1);
key_at(cid, mid_key_);
if(key == mid_key_) goto found;
uint64_t mid_pos = key_pos(mid_key_);
if(mid_pos > pos || (mid_pos == pos && mid_key_ > key)) {
last = cid;
last_pos = mid_pos;
} else {
first = cid;
first_pos = mid_pos;
}
}
// Then a linear search (avoids matrix computation)
for(cid = first + 1; cid < last; ++cid) {
key_at(cid, mid_key_);
if(key == mid_key_) goto found;
}
return false;
found:
val_at(cid, res);
*id = cid;
return true;
}
Val operator[](const Key& key) const {
Val res;
uint64_t id;
if(!val_id(key, &res, &id))
return 0;
return res;
}
inline Val check(const Key& key) const { return (*this)[key]; }
protected:
void key_at(size_t id, Key& key) const {
memcpy(key.data__(), data_ + id * record_len_, key_len_);
key.clean_msw();
}
void val_at(size_t id, Val* val) const {
*val = 0;
memcpy(val, data_ + id * record_len_ + key_len_, val_len_);
}
uint64_t key_pos(const Key& key) const {
return m_.times(key) & mask_;
}
};
}
#endif /* __JELLYFISH_BINARY_DUMPER_HPP__ */
|