This file is indexed.

/usr/include/jellyfish/cooperative_pool.hpp is in libjellyfish-2.0-dev 2.1.4-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
/*  This file is part of Jellyfish.

    Jellyfish is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    Jellyfish is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with Jellyfish.  If not, see <http://www.gnu.org/licenses/>.
*/


#ifndef __JELLYFISH_COOPERATIVE_POOL_HPP__
#define __JELLYFISH_COOPERATIVE_POOL_HPP__

#include <assert.h>
#include <unistd.h>

#include <jellyfish/circular_buffer.hpp>
#include <jellyfish/compare_and_swap.hpp>
#include <jellyfish/locks_pthread.hpp>

/// Cooperative pool. Provide a link between a producer and many
/// consumers. It is cooperative in the sense that there is no
/// dedicated thread to the producer. When the number of elements in
/// the queue from the producer to the consumer is less than half,
/// then the thread requesting an element attempts to become the
/// producer. It stays a producer until the producer to consumer queue
/// is full.
///
/// This class must be subclassed using CRTP. `T` is the type of the
/// element passed around in the queues. The derived class must
/// implement the method `bool produce(T& e)`. It is called when a
/// thread has become a producer. It must set in `e` the new element,
/// unless there is nothing more to produce. It returns `true` if
/// there is nothing more to produce (and `e` is not used), `false`
/// otherwise.
///
/// The following example will produce the integers `[0, 1000000]`:
///
/// ~~~{.cc}
/// class sequence : public cooperative_bool<sequence, int> {
///   int cur_;
/// public:
///   sequence() : cur_(0) { }
///   bool produce(int& e) {
///     if(cur_ <= 1000000) {
///       e = cur_++;
///       return false;
///     }
///     return true;
///   }
/// };
/// ~~~
///
/// To access the elements (or the jobs) of the sequence, instantiate
/// a `sequence::job` object and check that it is not empty. If empty,
/// the sequence is over.
///
/// ~~~{.cc}
/// sequence seq; // Sequence, instantiated in main thread
/// // In each consumer thread:
/// while(true) {
///   sequence::job j(seq);
///   if(j.is_empty())
///     break;
///   // Do computation using *j and j->
/// }
/// ~~~

namespace jellyfish {
template<typename D, typename T>
class cooperative_pool {
public:
  typedef jflib::circular_buffer<uint32_t> cbT;
  typedef T                                element_type;

private:
  uint32_t      size_;
  element_type* elts_;
  cbT           cons_prod_;     // FIFO from Consumers to Producers
  cbT           prod_cons_;     // FIFO from Producers to Consumers
  int           has_producer_;  // Tell whether a thread is acting as a producer

  // RAII token.
  class take_token {
    int* const token_;
    const bool has_token_;
  public:
    take_token(int* token) : token_(token), has_token_(jflib::cas(token_, 0, 1)) { }
    ~take_token() {
      if(has_token_)
        //        cas(token_, 1, 0); // Guaranteed to succeed. Memory barrier
        jflib::a_store(token_, 0);
    }
    bool has_token() const { return has_token_; }
  };

  explicit cooperative_pool(const cooperative_pool& rhs) : size_(0), elts_(0), cons_prod_(0), prod_cons_(0), has_producer_(0) { }
public:
  cooperative_pool(uint32_t size) :
    size_(size),
    elts_(new element_type[size_]),
    cons_prod_(size_ + 100),
    prod_cons_(size_ + 100),
    has_producer_(0)
  {
    // Every element is empty and ready to be filled by the producer
    for(size_t i = 0; i < size_; ++i)
      cons_prod_.enqueue_no_check(i);
  }

  ~cooperative_pool() { delete [] elts_; }

  uint32_t size() const { return size_; }

  element_type* element_begin() { return elts_; }
  element_type* element_end() { return elts_ + size_; }

  // Contains a filled element or is empty. In which case the producer
  // is done and we should stop processing.
  class job {
    cooperative_pool& cp_;
    uint32_t          i_;       // Index of element
  public:
    job(cooperative_pool& cp) : cp_(cp), i_(cp_.get_element()) { }
    ~job() { release(); }

    void release() {
      if(!is_empty()) {
        cp_.cons_prod_.enqueue_no_check(i_);
      }
    }
    bool is_empty() const { return i_ == cbT::guard; }
    void next() {
      release();
      i_ = cp_.get_element();
    }

    element_type& operator*() { return cp_.elts_[i_]; }
    element_type* operator->() { return &cp_.elts_[i_]; }

  private:
    // Disable copy of job
    job(const job& rhs) { }
    job& operator=(const job& rhs) { }
  };
  friend class job;

  /// STL compliant iterator
  class iterator : public std::iterator<std::input_iterator_tag, element_type> {
    job* j_;
  public:
    iterator() : j_(0) { }
    iterator(cooperative_pool& cp) : j_(new job(cp)) { }
    iterator(const iterator& rhs) : j_(rhs.j_) { }

    bool operator==(const iterator& rhs) const { return j_ == rhs.j_; }
    bool operator!=(const iterator& rhs) const { return j_ != rhs.j_; }
    element_type& operator*() { return j_->operator*(); }
    element_type* operator->() { return j_->operator->(); }

    iterator& operator++() {
      j_->next();
      if(j_->is_empty()) {
        delete j_;
        j_ = 0;
      }
      return *this;
    }

    iterator operator++(int) {
      iterator res(*this);
      ++*this;
      return res;
    }
  };
  iterator begin() { return iterator(*this); }
  const iterator begin() const { return iterator(*this); }
  const iterator end() const { return iterator(); }

private:
  enum PRODUCER_STATUS { PRODUCER_PRODUCED, PRODUCER_DONE, PRODUCER_EXISTS };
  uint32_t get_element() {
    int iteration = 0;

    while(true) {
      // If less than half full -> try to fill up producer to consumer
      // queue. Disregard return value: in any every case will
      // attempt to get an element for ourselves
      if(prod_cons_.fill() < prod_cons_.size() / 2)
        become_producer();

      uint32_t i = prod_cons_.dequeue();
      if(i != cbT::guard)
        return i;

      // Try to become producer
      switch(become_producer()) {
      case PRODUCER_PRODUCED:
        iteration = 0; // Produced. Attempt anew to get an element
        break;
      case PRODUCER_DONE:
        return prod_cons_.dequeue();
      case PRODUCER_EXISTS:
        delay(iteration++); // Already a producer. Wait a bit it adds things to queue
        break;
      }
    }
  }

  PRODUCER_STATUS become_producer() {
    if(prod_cons_.is_closed())
      return PRODUCER_DONE;

    // Mark that we have a produce (myself). If not, return. Token
    // will be release automatically at end of method.
    take_token producer_token(&has_producer_);
    if(!producer_token.has_token())
      return PRODUCER_EXISTS;

    uint32_t i = cbT::guard;
    try {
      while(true) { // Only way out is if produce method is done (returns true or throw an exception)
        i = cons_prod_.dequeue();
        if(i == cbT::guard)
          return PRODUCER_PRODUCED;

        if(static_cast<D*>(this)->produce(elts_[i])) // produce returns true if done
          break;

        prod_cons_.enqueue_no_check(i);
      }
    } catch(...) { }       // Threw an exception -> same as being done

    // Producing is done
    cons_prod_.enqueue_no_check(i);
    prod_cons_.close();

    return PRODUCER_DONE;
  }

  // First 16 operations -> no delay. Then exponential back-off up to a second.
  void delay(int iteration) {
    if(iteration < 16)
      return;
    int shift = 10 - std::min(iteration - 16, 10);
    usleep((1000000 - 1) >> shift);
  }
};

} // namespace jellyfish {
#endif /* __JELLYFISH_COOPERATIVE_POOL_HPP__ */