/usr/include/jellyfish/large_hash_array.hpp is in libjellyfish-2.0-dev 2.1.4-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 | /* This file is part of Jellyfish.
Jellyfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Jellyfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Jellyfish. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef __JELLYFISH_LARGE_HASH_ARRAY_HPP__
#define __JELLYFISH_LARGE_HASH_ARRAY_HPP__
#include <jellyfish/storage.hpp>
#include <jellyfish/atomic_gcc.hpp>
#include <jellyfish/allocators_mmap.hpp>
#include <jellyfish/offsets_key_value.hpp>
#include <jellyfish/misc.hpp>
#include <jellyfish/err.hpp>
#include <jellyfish/mer_dna.hpp>
#include <jellyfish/rectangular_binary_matrix.hpp>
#include <jellyfish/simple_circular_buffer.hpp>
#include <jellyfish/large_hash_iterator.hpp>
namespace jellyfish { namespace large_hash {
/* Contains an integer, the reprobe limit. It is capped based on the
* reprobe strategy to not be bigger than the size of the hash
* array. Also, the length to encode reprobe limit must not be larger
* than the length to encode _size.
*/
class reprobe_limit_t {
uint_t limit;
public:
reprobe_limit_t(uint_t _limit, const size_t *_reprobes, size_t _size) :
limit(_limit)
{
while(_reprobes[limit] >= _size && limit >= 1)
limit--;
}
inline uint_t val() const { return limit; }
};
// Key is any type with the following two methods: get_bits(unsigned
// int start, unsigned int len); and set_bits(unsigned int start,
// unsigned int len, uint64_t bits). These methods get and set the
// bits [start, start + len). Start and len may not be aligned to word
// boundaries. On the other hand, len is guaranteed to be <
// sizeof(uint64_t). I.e. never more than 1 word is fetched or set.
template<typename Key, typename word, typename atomic_t, typename Derived>
class array_base {
static const int wsize = std::numeric_limits<word>::digits; // Word size in bits
// Can't be done. Resort to an evil macro!
// static const word fmask = std::numeric_limits<word>::max(); // Mask full of ones
#define fmask (std::numeric_limits<word>::max())
public:
define_error_class(ErrorAllocation);
typedef word data_word;
typedef typename Offsets<word>::offset_t offset_t;
typedef struct offset_t::key key_offsets;
typedef struct offset_t::val val_offsets;
typedef Key key_type;
typedef uint64_t mapped_type;
typedef std::pair<Key&, mapped_type> value_type;
typedef stl_iterator_base<array_base> iterator;
typedef stl_iterator_base<array_base> const_iterator;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef eager_iterator_base<array_base> eager_iterator;
typedef lazy_iterator_base<array_base> lazy_iterator;
typedef region_iterator_base<array_base> region_iterator;
/// Status of a (key,value) pair. LBSET means that the large bit is
/// set. Hence, it contains a pointer back to the original key and a
/// large value.
enum key_status { FILLED, EMPTY, LBSET};
protected:
uint16_t lsize_; // log of size
size_t size_, size_mask_;
reprobe_limit_t reprobe_limit_;
uint16_t key_len_; // Length of key in bits
uint16_t raw_key_len_; // Length of key stored raw (i.e. complement of implied length)
Offsets<word> offsets_; // key len reduced by size of hash array
size_t size_bytes_;
word * const data_;
atomic_t atomic_;
const size_t *reprobes_;
RectangularBinaryMatrix hash_matrix_;
RectangularBinaryMatrix hash_inverse_matrix_;
public:
/// Give information about memory usage and array size.
struct usage_info {
uint16_t key_len_, val_len_, reprobe_limit_;
const size_t* reprobes_;
usage_info(uint16_t key_len, uint16_t val_len, uint16_t reprobe_limit,
const size_t* reprobes = jellyfish::quadratic_reprobes) :
key_len_(key_len), val_len_(val_len), reprobe_limit_(reprobe_limit), reprobes_(reprobes) { }
/// Memory usage for a given size.
size_t mem(size_t size) {
uint16_t lsize(ceilLog2(size));
size_t asize((size_t)1 << lsize);
reprobe_limit_t areprobe_limit(reprobe_limit_, reprobes_, asize);
uint16_t raw_key_len(key_len_ > lsize ? key_len_ - lsize : 0);
Offsets<word> offsets(raw_key_len + bitsize(areprobe_limit.val() + 1), val_len_,
areprobe_limit.val() + 1);
return div_ceil(asize,
(size_t)offsets.block_len()) * offsets.block_word_len() * sizeof(word) + sizeof(array_base) + sizeof(Offsets<word>);
}
/// Actual size for a given size.
size_t asize(size_t size) { return (size_t)1 << ceilLog2(size); }
struct fit_in {
usage_info* i_;
size_t mem_;
fit_in(usage_info* i, size_t mem) : i_(i), mem_(mem) { }
bool operator()(uint16_t size_bits) const { return i_->mem((size_t)1 << size_bits) < mem_; }
};
/// Maximum size for a given maximum memory.
size_t size(size_t mem) { return (size_t)1 << size_bits(mem); }
/// Log of maximum size for a given maximum memory
uint16_t size_bits(size_t mem) {
uint16_t res = *binary_search_first_false(pointer_integer<uint16_t>(0), pointer_integer<uint16_t>(64),
fit_in(this, mem));
return res > 0 ? res - 1 : 0;
}
size_t size_bits_linear(size_t mem) {
fit_in predicate(this, mem);
uint16_t i = 0;
for( ; i < 64; ++i)
if(!predicate(i))
break;
return i > 0 ? i - 1 : 0;
}
};
array_base(size_t size, // Size of hash. To be rounded up to a power of 2
uint16_t key_len, // Size of key in bits
uint16_t val_len, // Size of val in bits
uint16_t reprobe_limit, // Maximum reprobe
RectangularBinaryMatrix m,
const size_t* reprobes = quadratic_reprobes) : // Reprobing policy
lsize_(ceilLog2(size)),
size_((size_t)1 << lsize_),
size_mask_(size_ - 1),
reprobe_limit_(reprobe_limit, reprobes, size_),
key_len_(key_len),
raw_key_len_(key_len_ > lsize_ ? key_len_ - lsize_ : 0),
offsets_(raw_key_len_ + bitsize(reprobe_limit_.val() + 1), val_len, reprobe_limit_.val() + 1),
size_bytes_(div_ceil(size_, (size_t)offsets_.block_len()) * offsets_.block_word_len() * sizeof(word)),
data_(static_cast<Derived*>(this)->alloc_data(size_bytes_)),
reprobes_(reprobes),
hash_matrix_(m),
hash_inverse_matrix_(hash_matrix_.pseudo_inverse())
{
if(!data_)
throw ErrorAllocation(err::msg() << "Failed to allocate "
<< (div_ceil(size, (size_t)offsets_.block_len()) * offsets_.block_word_len() * sizeof(word))
<< " bytes of memory");
}
array_base(array_base&& ary) :
lsize_(ary.lsize_),
size_(ary.size_),
size_mask_(size_ - 1),
reprobe_limit_(ary.reprobe_limit_),
key_len_(ary.key_len_),
raw_key_len_(ary.raw_key_len_),
offsets_(std::move(ary.offsets_)),
size_bytes_(ary.size_bytes_),
data_(ary.data_),
reprobes_(ary.reprobes_),
hash_matrix_(std::move(ary.hash_matrix_)),
hash_inverse_matrix_(std::move(ary.hash_inverse_matrix_))
{ }
array_base& operator=(const array_base& rhs) = delete;
array_base& operator=(array_base&& rhs) = delete;
size_t size() const { return size_; }
size_t lsize() const { return lsize_; }
size_t size_mask() const { return size_mask_; }
uint_t key_len() const { return key_len_; }
uint_t val_len() const { return offsets_.val_len(); }
const size_t* reprobes() const { return reprobes_; }
uint_t max_reprobe() const { return reprobe_limit_.val(); }
size_t max_reprobe_offset() const { return reprobes_[reprobe_limit_.val()]; }
const RectangularBinaryMatrix& matrix() const { return hash_matrix_; }
const RectangularBinaryMatrix& inverse_matrix() const { return hash_inverse_matrix_; }
void matrix(const RectangularBinaryMatrix& m) {
hash_inverse_matrix_ = m.pseudo_inverse();
hash_matrix_ = m;
}
/**
* Clear hash table. Not thread safe.
*/
void clear() {
memset(data_, '\0', size_bytes_);
}
/**
* Write the hash table raw to a stream. Not thread safe.
*/
void write(std::ostream& os) const {
os.write((const char*)data_, size_bytes_);
}
size_t size_bytes() const { return size_bytes_; }
/* The storage of the hash is organized in "blocks". A (key,value)
* pair always start at bit 0 of the block. The following methods
* work with the blocks of the hash.
*/
/**
* Number of blocks needed to fit at least a given number of
* records. Given a number of records, it returns the number of
* blocks necessary and the actual number of records these blocks
* contain.
*/
std::pair<size_t, size_t> blocks_for_records(size_t nb_records) const {
return offsets_.blocks_for_records(nb_records);
}
/**
* Convert coordinate from (start, blen) given in blocks to
* coordinate in char* and length in bytes. It also makes sure that
* the pointer and length returned do not go beyond allocated
* memory.
*/
void block_to_ptr(const size_t start, const size_t blen,
char **start_ptr, size_t *memlen) const {
*start_ptr = (char *)(data_ + start * offsets_.block_word_len());
char *end_ptr = (char *)data_ + size_bytes_;
if(*start_ptr >= end_ptr) {
*memlen = 0;
return;
}
*memlen = blen * offsets_.block_word_len() * sizeof(word);
if(*start_ptr + *memlen > end_ptr)
*memlen = end_ptr - *start_ptr;
}
/**
* Zero out blocks in [start, start+length), where start and
* length are given in number of blocks.
**/
void zero_blocks(const size_t start, const size_t length) {
char *start_ptr;
size_t memlen;
block_to_ptr(start, length, &start_ptr, &memlen);
memset(start_ptr, '\0', memlen);
}
/**
* Use hash values as counters.
*
* The matrix multiplication gets only a uint64_t. The lsb of the
* matrix product, the hsb are assume to be equal to the key itself
* (the matrix has a partial identity on the first rows).
*
* In case of failure (false is returned), carry_shift contains the
* number of bits of the value that were successfully stored in the
* hash (low significant bits). If carry_shift == 0, then nothing
* was stored and the key is not in the hash at all. In that case,
* the value of *is_new and *id are not valid. If carry_shift > 0,
* then the key is present but the value stored is not correct
* (missing the high significant bits of value), but *is_new and *id
* contain the proper information.
*/
inline bool add(const key_type& key, mapped_type val, unsigned int* carry_shift, bool* is_new, size_t* id) {
uint64_t hash = hash_matrix_.times(key);
*carry_shift = 0;
return add_rec(hash & size_mask_, key, val, false, is_new, id, carry_shift);
}
inline bool add(const key_type& key, mapped_type val, unsigned int* carry_shift) {
bool is_new = false;
size_t id = 0;
return add(key, val, carry_shift, &is_new, &id);
}
inline bool add(const key_type& key, mapped_type val) {
unsigned int carry_shift = 0;
return add(key, val, &carry_shift);
}
inline bool set(const key_type& key) {
bool is_new;
size_t id;
return set(key, &is_new, &id);
}
bool set(const key_type& key, bool* is_new, size_t* id) {
word* w;
const offset_t* o;
*id = hash_matrix_.times(key) & size_mask_;
return claim_key(key, is_new, id, &o, &w);
}
/**
* Use hash values as counters, if already exists
*
* Add val to the value associated with key if key is already in the
* hash. Returns true if the update was done, false otherwise.
*/
inline bool update_add(const key_type& key, mapped_type val) {
key_type tmp_key;
unsigned int carry_shift;
return update_add(key, val, &carry_shift, tmp_key);
}
// Optimization. Use tmp_key as buffer. Avoids allocation if update_add is called repeatedly.
bool update_add(const key_type& key, mapped_type val, unsigned int* carry_shift, key_type& tmp_key) {
size_t id;
word* w;
const offset_t* o;
*carry_shift = 0;
if(get_key_id(key, &id, tmp_key, (const word**)&w, &o))
return add_rec_at(id, key, val, o, w, carry_shift);
return false;
}
// Get the value, stored in *val, associated with key. If the key is
// not found, false is returned, otherwise true is returned and *val
// is updated. If carry_bit is true, then the first bit of the key
// field indicates whether we should reprobe to get the complete
// value.
inline bool get_val_for_key(const key_type& key, mapped_type* val, bool carry_bit = false) const {
key_type tmp_key;
size_t id;
return get_val_for_key(key, val, tmp_key, &id, carry_bit);
}
// Optimization version. A tmp_key buffer is passed and the id where
// the key was found is return in *id. If get_val_for_key is called
// many times consecutively, it may be faster to pass the same
// tmp_key buffer instead of allocating it every time.
bool get_val_for_key(const key_type& key, mapped_type* val, key_type& tmp_key,
size_t* id, bool carry_bit = false) const {
const word* w;
const offset_t* o;
if(!get_key_id(key, id, tmp_key, &w, &o))
return false;
*val = get_val_at_id(*id, w, o, true, carry_bit);
return true;
}
// Return true if the key is present in the hash
inline bool has_key(const key_type& key) const {
size_t id;
return get_key_id(key, &id);
}
// Get the id of the key in the hash. Returns true if the key is
// found in the hash, false otherwise.
inline bool get_key_id(const key_type& key, size_t* id) const {
key_type tmp_key;
const word* w;
const offset_t* o;
return get_key_id(key, id, tmp_key, &w, &o);
}
// Optimization version where a tmp_key buffer is provided instead
// of being allocated. May be faster if many calls to get_key_id are
// made consecutively by passing the same tmp_key each time.
inline bool get_key_id(const key_type& key, size_t* id, key_type& tmp_key) const {
const word* w;
const offset_t* o;
return get_key_id(key, id, tmp_key, &w, &o);
}
protected:
// Information and methods to manage the prefetched data.
struct prefetch_info {
size_t id;
const word* w;
const offset_t *o, *lo;
};
typedef simple_circular_buffer::pre_alloc<prefetch_info, 8> prefetch_buffer;
void warm_up_cache(prefetch_buffer& buffer, size_t oid) const {
buffer.clear();
for(int i = 0; i < buffer.capacity(); ++i) {
buffer.push_back();
prefetch_info& info = buffer.back();
info.id = (oid + (i > 0 ? reprobes_[i] : 0)) & size_mask_;
info.w = offsets_.word_offset(info.id, &info.o, &info.lo, data_);
__builtin_prefetch(info.w + info.o->key.woff, 0, 1);
__builtin_prefetch(info.o, 0, 3);
}
}
void prefetch_next(prefetch_buffer& buffer, size_t oid, uint_t reprobe) const {
buffer.pop_front();
// if(reprobe + buffer.capacity() <= reprobe_limit_.val()) {
buffer.push_back();
prefetch_info& info = buffer.back();
info.id = (oid + reprobes_[reprobe + buffer.capacity() - 1]) & size_mask_;
info.w = offsets_.word_offset(info.id, &info.o, &info.lo, data_);
__builtin_prefetch(info.w + info.o->key.woff, 0, 1);
__builtin_prefetch(info.o, 0, 3);
// }
}
public:
// Optimization version again. Also return the word and the offset
// information where the key was found. These can be used later one
// to fetch the value associated with the key.
inline bool get_key_id(const key_type& key, size_t* id, key_type& tmp_key, const word** w, const offset_t** o) const {
return get_key_id(key, id, tmp_key, w, o, hash_matrix_.times(key) & size_mask_);
}
// Find the actual id of the key in the hash, starting at oid.
bool get_key_id(const key_type& key, size_t* id, key_type& tmp_key, const word** w, const offset_t** o, const size_t oid) const {
// This static_assert makes clang++ happy
static_assert(std::is_pod<prefetch_info>::value, "prefetch_info must be a POD");
prefetch_info info_ary[prefetch_buffer::capacityConstant];
prefetch_buffer buffer(info_ary);
warm_up_cache(buffer, oid);
for(uint_t reprobe = 0; reprobe <= reprobe_limit_.val(); ++reprobe) {
prefetch_info& info = buffer.front();
key_status st = get_key_at_id(info.id, tmp_key, info.w, info.o);
switch(st) {
case EMPTY:
return false;
case FILLED:
if(oid != tmp_key.get_bits(0, lsize_))
break;
tmp_key.template set_bits<false>(0, lsize_, key.get_bits(0, lsize_));
if(tmp_key != key)
break;
*id = info.id;
*w = info.w;
*o = info.o;
return true;
default:
break;
}
prefetch_next(buffer, oid, reprobe + 1);
} // for
return false;
}
//////////////////////////////
// Iterator
//////////////////////////////
const_iterator begin() { return const_iterator(this); }
const_iterator begin() const { return const_iterator(this); }
const_iterator end() { return const_iterator(); }
const_iterator end() const { return const_iterator(); }
/// Get a slice of an array as an iterator
template<typename Iterator>
Iterator iterator_slice(size_t index, size_t nb_slices) const {
std::pair<size_t, size_t> res = slice(index, nb_slices, size());
return Iterator(this, res.first, res.second);
}
template<typename Iterator>
Iterator iterator_all() const { return iterator_slice<Iterator>(0, 1); }
// See hash_counter.hpp for why we added this method. It should not
// be needed, but I can't get the thing to compile without :(.
eager_iterator eager_slice(size_t index, size_t nb_slices) const {
return iterator_slice<eager_iterator>(index, nb_slices);
}
region_iterator region_slice(size_t index, size_t nb_slices) const {
return iterator_slice<region_iterator>(index, nb_slices);
}
// Claim a key with the large bit not set. I.e. first entry for a key.
//
// id is input/output. Equal to hash & size_maks on input. Equal to
// actual id where key was set on output. key is already hash
// shifted and masked to get higher bits. (>> lsize & key_mask)
// is_new is set on output to true if key did not exists in hash
// before. *ao points to the actual offsets object and w to the word
// holding the value.
bool claim_key(const key_type& key, bool* is_new, size_t* id, const offset_t** _ao, word** _w) {
uint_t reprobe = 0;
const offset_t *o, *lo;
word *w, *kw, nkey;
bool key_claimed = false;
size_t cid = *id;
// Akey contains first word of what to store in the key
// field. I.e. part of the original key (the rest is encoded in
// the original position) and the reprobe value to substract from
// the actual position to get to the original position.
//
// MSB LSB
// +--------------+-------------+
// | MSB of key | reprobe |
// + -------------+-------------+
// raw_key_len reprobe_len
//
// Akey is updated at every operation to reflect the current
// reprobe value. nkey is the temporary word containing the part
// to be stored in the current word kw (+ some offset).
word akey = 1; // start reprobe value == 0. Store reprobe value + 1
const int to_copy = std::min((uint16_t)(wsize - offsets_.reprobe_len()), raw_key_len_);
const int implied_copy = std::min(key_len_, lsize_);
akey |= key.get_bits(implied_copy, to_copy) << offsets_.reprobe_len();
const int abits_copied = implied_copy + to_copy; // Bits from original key already copied, explicitly or implicitly
do {
int bits_copied = abits_copied;
w = offsets_.word_offset(cid, &o, &lo, data_);
kw = w + o->key.woff;
if(o->key.sb_mask1) { // key split on multiple words
nkey = akey << o->key.boff;
nkey |= o->key.sb_mask1;
nkey &= o->key.mask1;
key_claimed = set_key(kw, nkey, o->key.mask1, o->key.mask1, is_new);
if(key_claimed) {
nkey = akey >> o->key.shift;
if(o->key.full_words) {
// Copy full words. First one is special
nkey |= key.get_bits(bits_copied, o->key.shift - 1) << (wsize - o->key.shift);
bits_copied += o->key.shift - 1;
nkey |= o->key.sb_mask1; // Set bit is MSB
int copied_full_words = 1;
key_claimed = set_key(kw + copied_full_words, nkey, fmask, fmask, is_new);
// Copy more full words if needed
while(bits_copied + wsize - 1 <= key_len_ && key_claimed) {
nkey = key.get_bits(bits_copied, wsize - 1);
bits_copied += wsize - 1;
nkey |= o->key.sb_mask1;
copied_full_words += 1;
key_claimed = set_key(kw + copied_full_words, nkey, fmask, fmask, is_new);
}
assert(!key_claimed || (bits_copied < key_len_) == (o->key.sb_mask2 != 0));
if(o->key.sb_mask2 && key_claimed) { // Copy last word
nkey = key.get_bits(bits_copied, key_len_ - bits_copied);
nkey |= o->key.sb_mask2;
copied_full_words += 1;
key_claimed = set_key(kw + copied_full_words, nkey, o->key.mask2, o->key.mask2, is_new);
}
} else if(o->key.sb_mask2) { // if bits_copied + wsize - 1 < key_len
// Copy last word, no full words copied
nkey |= key.get_bits(bits_copied, key_len_ - bits_copied) << (wsize - o->key.shift);
nkey |= o->key.sb_mask2;
nkey &= o->key.mask2;
key_claimed = set_key(kw + 1, nkey, o->key.mask2, o->key.mask2, is_new);
}
} // if(key_claimed)
} else { // key on one word
nkey = akey << o->key.boff;
nkey &= o->key.mask1;
key_claimed = set_key(kw, nkey, o->key.mask1, o->key.mask1, is_new);
}
if(!key_claimed) { // reprobe
if(++reprobe > reprobe_limit_.val())
return false;
cid = (*id + reprobes_[reprobe]) & size_mask_;
akey = (akey & ~offsets_.reprobe_mask()) | (reprobe + 1);
}
} while(!key_claimed);
*id = cid;
*_w = w;
*_ao = o;
return true;
}
// Claim large key. Enter an entry for a key when it is not the
// first entry. Only encode the number of reprobe hops back to the
// first entry of the key in the hash table. It is simpler as can
// takes less than one word in length.
bool claim_large_key(size_t* id, const offset_t** _ao, word** _w) {
uint_t reprobe = 0;
size_t cid = *id;
const offset_t *o, *lo;
word *w, *kw, nkey;
bool key_claimed = false;
do {
w = offsets_.word_offset(cid, &o, &lo, data_);
kw = w + lo->key.woff;
if(lo->key.sb_mask1) { // key split on multiple words
nkey = (reprobe << lo->key.boff) | lo->key.sb_mask1 | lo->key.lb_mask;
nkey &= lo->key.mask1;
// Use o->key.mask1 and not lo->key.mask1 as the first one is
// guaranteed to be bigger. The key needs to be free on its
// longer mask to claim it!
key_claimed = set_key(kw, nkey, o->key.mask1, lo->key.mask1);
if(key_claimed) {
nkey = (reprobe >> lo->key.shift) | lo->key.sb_mask2;
nkey &= lo->key.mask2;
key_claimed = set_key(kw + 1, nkey, o->key.full_words ? fmask : o->key.mask2, lo->key.mask2);
}
} else { // key on 1 word
nkey = (reprobe << lo->key.boff) | lo->key.lb_mask;
nkey &= lo->key.mask1;
key_claimed = set_key(kw, nkey, o->key.mask1, lo->key.mask1);
}
if(!key_claimed) { //reprobe
if(++reprobe > reprobe_limit_.val())
return false;
cid = (*id + reprobes_[reprobe]) & size_mask_;
}
} while(!key_claimed);
*id = cid;
*_w = w;
*_ao = lo;
return true;
}
// Add val to key. id is the starting place (result of hash
// computation). eid is set to the effective place in the
// array. large is set to true is setting a large key (upon
// recurrence if there is a carry).
bool add_rec(size_t id, const key_type& key, word val, bool large, bool* is_new, size_t* eid, unsigned int* carry_shift) {
const offset_t *ao = 0;
word *w = 0;
bool claimed = false;
if(large)
claimed = claim_large_key(&id, &ao, &w);
else
claimed = claim_key(key, is_new, &id, &ao, &w);
if(!claimed)
return false;
*eid = id;
return add_rec_at(id, key, val, ao, w, carry_shift);
}
bool add_rec_at(size_t id, const key_type& key, word val, const offset_t* ao, word* w, unsigned int* carry_shift) {
// Increment value
word *vw = w + ao->val.woff;
word cary = add_val(vw, val, ao->val.boff, ao->val.mask1);
cary >>= ao->val.shift;
*carry_shift += ao->val.shift;
if(cary && ao->val.mask2) { // value split on two words
cary = add_val(vw + 1, cary, 0, ao->val.mask2);
cary >>= ao->val.cshift;
*carry_shift += ao->val.cshift;
}
if(!cary)
return true;
id = (id + reprobes_[0]) & size_mask_;
size_t ignore_eid;
bool ignore_is_new;
return add_rec(id, key, cary, true, &ignore_is_new, &ignore_eid, carry_shift);
// // Adding failed, table is full. Need to back-track and
// // substract val.
// std::cerr << "Failed to add large part of value -> return false\n";
// cary = add_val(vw, ((word)1 << offsets_.val_len()) - val,
// ao->val.boff, ao->val.mask1);
// cary >>= ao->val.shift;
// if(cary && ao->val.mask2) {
// // Can I ignore the cary here? Table is known to be full, so
// // not much of a choice. But does it leave the table in a
// // consistent state?
// add_val(vw + 1, cary, 0, ao->val.mask2);
// }
// return false;
}
// Atomic methods to set the key. Attempt to set nkey in word w. All
// bits matching free_mask must be unset and the bits matching
// equal_mask must be equal for a success in setting the key. Set
// is_new to true if the spot was previously empty. Otherwise, if
// is_new is false but true is returned, the key was already present
// at that spot.
inline bool set_key(word *w, word nkey, word free_mask, word equal_mask, bool *is_new) {
word ow = *w, nw, okey;
okey = ow & free_mask;
while(okey == 0) { // large bit not set && key is free
nw = atomic_.cas(w, ow, ow | nkey);
if(nw == ow) {
*is_new = true;
return true;
}
ow = nw;
okey = ow & free_mask;
}
*is_new = false;
return (ow & equal_mask) == nkey;
}
inline bool set_key(word *w, word nkey, word free_mask, word equal_mask) {
bool is_new;
return set_key(w, nkey, free_mask, equal_mask, &is_new);
}
// Add val the value in word w, with shift and mask giving the
// particular part of the word in which the value is stored. The
// return value is the carry.
inline word add_val(word *w, word val, uint_t shift, word mask) {
word now = *w, ow, nw, nval;
do {
ow = now;
nval = ((ow & mask) >> shift) + val;
nw = (ow & ~mask) | ((nval << shift) & mask);
now = atomic_.cas(w, ow, nw);
} while(now != ow);
return nval & (~(mask >> shift));
}
// Return the key and value at position id. If the slot at id is
// empty or has the large bit set, returns false. Otherwise, returns
// the key and the value is the sum of all the entries in the hash
// table for that key. I.e., the table is search forward for entries
// with large bit set pointing back to the key at id, and all those
// values are summed up.
key_status get_key_val_at_id(size_t id, key_type& key, word& val, const bool carry_bit = false) const {
const word* w;
const offset_t* o;
key_status st = get_key_at_id(id, key, &w, &o);
if(st != FILLED)
return st;
val = get_val_at_id(id, w, o, true, carry_bit);
return FILLED;
}
// Get a the key at the given id. It also returns the word and
// offset information in w and o. The return value is EMPTY (no key
// at id), FILLED (there is a key at id), LBSET (the large bit is
// set, hence the key is only a pointer back to the real key).
//
// The key returned contains the original id in the hash as its
// lsize_ lsb bits. To obtain the full key, one needs to compute the
// product with the inverse matrix to get the lsb bits.
inline key_status get_key_at_id(size_t id, key_type& key, const word** w, const offset_t** o) const {
const offset_t *lo;
*w = offsets_.word_offset(id, o, &lo, data_);
return get_key_at_id(id, key, *w, *o);
}
// Sam as above, but it assume that the word w and o for id have
// already be computed (like already prefetched).
key_status get_key_at_id(size_t id, key_type&key, const word* w, const offset_t* o) const {
const word* kvw = w + o->key.woff;
word key_word = *kvw;
word kreprobe = 0;
const key_offsets& key_o = o->key;
if(key_word & key_o.lb_mask)
return LBSET;
const int implied_copy = std::min(lsize_, key_len_);
int bits_copied = implied_copy;
if(key_o.sb_mask1) {
if((key_word & key_o.sb_mask1) == 0)
return EMPTY;
kreprobe = (key_word & key_o.mask1 & ~key_o.sb_mask1) >> key_o.boff;
if(key_o.full_words) {
// Copy full words. First one is special
key_word = *(kvw + 1);
if(offsets_.reprobe_len() < key_o.shift) {
key.set_bits(bits_copied, key_o.shift - offsets_.reprobe_len(), kreprobe >> offsets_.reprobe_len());
bits_copied += key_o.shift - offsets_.reprobe_len();
kreprobe &= offsets_.reprobe_mask();
key.set_bits(bits_copied, wsize - 1, key_word & ~key_o.sb_mask1);
bits_copied += wsize - 1;
} else {
int reprobe_left = offsets_.reprobe_len() - key_o.shift;
kreprobe |= (key_word & (((word)1 << reprobe_left) - 1)) << key_o.shift;
key.set_bits(bits_copied, wsize - 1 - reprobe_left, (key_word & ~key_o.sb_mask1) >> reprobe_left);
bits_copied += wsize - 1 - reprobe_left;
}
int word_copied = 2;
while(bits_copied + wsize - 1 <= key_len_) {
key.set_bits(bits_copied, wsize - 1, *(kvw + word_copied++) & (fmask >> 1));
bits_copied += wsize - 1;
}
if(key_o.sb_mask2)
key.set_bits(bits_copied, key_len_ - bits_copied, *(kvw + word_copied) & key_o.mask2 & ~key_o.sb_mask2);
} else if(key_o.sb_mask2) { // if(bits_copied + wsize - 1 < key_len
// Two words but no full words
key_word = *(kvw + 1) & key_o.mask2 & ~key_o.sb_mask2;
if(offsets_.reprobe_len() < key_o.shift) {
key.set_bits(bits_copied, key_o.shift - offsets_.reprobe_len(), kreprobe >> offsets_.reprobe_len());
bits_copied += key_o.shift - offsets_.reprobe_len();
kreprobe &= offsets_.reprobe_mask();
key.set_bits(bits_copied, key_len_ - bits_copied, key_word);
} else {
int reprobe_left = offsets_.reprobe_len() - key_o.shift;
kreprobe |= (key_word & (((word)1 << reprobe_left) - 1)) << key_o.shift;
key.set_bits(bits_copied, key_len_ - bits_copied, key_word >> reprobe_left);
}
}
} else { // if(key_o.sb_mask1
// Everything in 1 word
key_word = (key_word & key_o.mask1) >> key_o.boff;
if(key_word == 0)
return EMPTY;
kreprobe = key_word & offsets_.reprobe_mask();
key.set_bits(bits_copied, raw_key_len_, key_word >> offsets_.reprobe_len());
}
// Compute missing oid so that the original key can be computed
// back through the inverse matrix. Although the key may have a
// length of key_len_, which may be less than lsize_, assume that
// it still fit here as lsize_ is less than a word length. Need all lsize_.
size_t oid = id; // Original id
if(kreprobe > 1)
oid -= reprobes_[kreprobe - 1];
oid &= size_mask_;
// Can use more bits than mer size. That's OK, will fix it later
// when computing the actual mers by computing the product with
// the inverse matrix.
key.template set_bits<0>(0, lsize_, oid);
return FILLED;
}
word get_val_at_id(const size_t id, const word* w, const offset_t* o, const bool reprobe = true,
const bool carry_bit = false) const {
word val = 0;
if(val_len() == 0)
return val;
// First part of value
const word* kvw = w + o->val.woff;
val = ((*kvw) & o->val.mask1) >> o->val.boff;
if(o->val.mask2)
val |= ((*(kvw+1)) & o->val.mask2) << o->val.shift;
// Do we want to get the large value
bool do_reprobe = reprobe;
if(carry_bit && do_reprobe) {
do_reprobe = do_reprobe && (val & 0x1);
val >>= 1;
}
if(!do_reprobe)
return val;
return resolve_val_rec((id + reprobes_[0]) & size_mask_, val, carry_bit);
}
word resolve_val_rec(const size_t id, word val, const bool carry_bit, const uint_t overflows = 0) const {
uint_t reprobe = 0;
size_t cid = id;
while(reprobe <= reprobe_limit_.val()) {
const offset_t *o, *lo;
const word* w = offsets_.word_offset(cid, &o, &lo, data_);
const word* kw = w + o->key.woff;
word nkey = *kw;
const key_offsets& lkey = lo->key;
if(nkey & lkey.lb_mask) {
// If the large bit is set, the size of the key (reprobe_len)
// is guaranteed to have a length of at most 1 word.
if(lkey.sb_mask1) {
nkey = (nkey & lkey.mask1 & ~lkey.sb_mask1) >> lkey.boff;
nkey |= ((*(kw+1)) & lkey.mask2 & ~lkey.sb_mask2) << lkey.shift;
} else {
nkey = (nkey & lkey.mask1) >> lkey.boff;
}
if(nkey == reprobe) {
const val_offsets& lval = lo->val;
const word* vw = w + lval.woff;
word nval = ((*vw) & lval.mask1) >> lval.boff;
if(lval.mask2)
nval |= ((*(vw+1)) & lval.mask2) << lval.shift;
bool do_reprobe = true;
if(carry_bit) {
do_reprobe = nval & 0x1;
nval >>= 1;
}
nval <<= offsets_.val_len();
nval <<= offsets_.lval_len() * overflows;
val += nval;
if(!do_reprobe)
return val;
return resolve_val_rec((cid + reprobes_[0]) & size_mask_, val, carry_bit, overflows + 1);
}
} else if((nkey & o->key.mask1) == 0) {
break;
}
cid = (id + reprobes_[++reprobe]) & size_mask_;
}
return val;
}
};
template<typename Key, typename word = uint64_t, typename atomic_t = ::atomic::gcc, typename mem_block_t = ::allocators::mmap>
class array :
protected mem_block_t,
public array_base<Key, word, atomic_t, array<Key, word, atomic_t, mem_block_t> >
{
typedef array_base<Key, word, atomic_t, array<Key, word, atomic_t, mem_block_t> > super;
friend class array_base<Key, word, atomic_t, array<Key, word, atomic_t, mem_block_t> >;
public:
array(size_t size, // Size of hash. To be rounded up to a power of 2
uint16_t key_len, // Size of key in bits
uint16_t val_len, // Size of val in bits
uint16_t reprobe_limit, // Maximum reprobe
const size_t* reprobes = quadratic_reprobes) : // Reprobing policy
mem_block_t(),
super(size, key_len, val_len, reprobe_limit, RectangularBinaryMatrix(ceilLog2(size), key_len).randomize_pseudo_inverse(),
reprobes)
{ }
protected:
word* alloc_data(size_t s) {
mem_block_t::realloc(s);
return (word*)mem_block_t::get_ptr();
}
};
struct ptr_info {
void* ptr_;
size_t bytes_;
ptr_info(void* ptr, size_t bytes) : ptr_(ptr), bytes_(bytes) { }
};
template<typename Key, typename word = uint64_t, typename atomic_t = ::atomic::gcc>
class array_raw :
protected ptr_info,
public array_base<Key, word, atomic_t, array_raw<Key, word, atomic_t> >
{
typedef array_base<Key, word, atomic_t, array_raw<Key, word, atomic_t> > super;
friend class array_base<Key, word, atomic_t, array_raw<Key, word, atomic_t> >;
public:
array_raw(void* ptr,
size_t bytes, // Memory available at ptr
size_t size, // Size of hash in number of entries. To be rounded up to a power of 2
uint16_t key_len, // Size of key in bits
uint16_t val_len, // Size of val in bits
uint16_t reprobe_limit, // Maximum reprobe
RectangularBinaryMatrix m,
const size_t* reprobes = quadratic_reprobes) : // Reprobing policy
ptr_info(ptr, bytes),
super(size, key_len, val_len, reprobe_limit, m, reprobes)
{ }
protected:
word* alloc_data(size_t s) {
assert(bytes_ == s);
return (word*)ptr_;
}
};
} } // namespace jellyfish { namespace large_hash_array
#endif /* __JELLYFISH_LARGE_HASH_ARRAY_HPP__ */
|