This file is indexed.

/usr/include/jellyfish/offsets_key_value.hpp is in libjellyfish-2.0-dev 2.1.4-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
/*  This file is part of Jellyfish.

    Jellyfish is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    Jellyfish is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with Jellyfish.  If not, see <http://www.gnu.org/licenses/>.
*/

#ifndef __JELLYFISH_OFFSETS_KEY_VALUE_HPP__
#define __JELLYFISH_OFFSETS_KEY_VALUE_HPP__

#include <signal.h>
#include <iostream>
#include <sstream>

#include <jellyfish/misc.hpp>
#include <jellyfish/divisor.hpp>

namespace jellyfish {

/* A word is whatever aligned type used for atomic operations
 * (CAS). Typically, a uint64_t. We store pairs of (key, value), in a
 * bit packed fashion. The key and value can have abritrary size as
 * long as they each fit in one word. A block is the largest number of
 * (key, value) pair such that the first key, and only the first,
 * starts at an aligned word.
 *
 * The key 0x0 is not valid. A key which fits completely within one
 * word is not protected by a "set" bit. A key which straddle the
 * boundary between two aligned words has a set bit in each parts.
 *
 * A value field can have any value and is initialized to 0x0. It has
 * no "set" bit ever.
 *
 * A key is prefixed with a "large" bit. If this bit is 0, the key
 * field is length key_len (not counting the possible set bits) and
 * the value field has length val_len. If the large bit has value 1,
 * the key field is just long enough to encode the number of
 * reprobing hops to go backward to find the actual key. The
 * remainder bits is used for the value field. In this scheme, we
 * assume the length needed to encode the number of reprobes is much
 * less than the length needed to encode the key.
 *
 * The size of the value field, for the normal and large field, is
 * capped at 64. If there is more bits available, they are wasted.
 */

/* Offsets holds all the possible offset for a given combination of
 * key length, value length and reprobe limit.
 */
template<typename word>
class Offsets {
public:
  // woff: offset in words from beginning of block
  // boff: offset in bits within that word. Paste large bit.
  // shift: number of bits stored in first word, or shift to get to beginning of second word
  // cshift: number of bits stored in last word
  // mask1: includes the large bit and the set bit if any.
  // mask2: mask in last word. Contains large and set bit if any. 0 if last word is full
  // sb_mask[12]: mask for set bit in words 1 to last-1 and in last word, if any. set bit is the
  //              last usable bit of the field.
  // lb_mask: mask for the large bit. It is the first bit of the key field.
  // full words: need to copy full words
  typedef struct {
    struct key {
      unsigned int woff, boff, shift, cshift;
      word     mask1, mask2, sb_mask1, sb_mask2, lb_mask;
      bool     full_words;
    };
    struct key key;
    struct val {
      unsigned int woff, boff, shift, cshift;
      word     mask1, mask2;
    };
    struct val val;
  } offset_t;
  typedef struct {
    offset_t    normal;
    offset_t    large;
  } offset_pair_t;
  struct block_info {
    unsigned int len;
    unsigned int word_len;
  };
  //    Offsets() {}

  Offsets(unsigned int _key_len, unsigned int _val_len, unsigned int _reprobe_limit) :
    key_len_(_key_len),
    val_len_(_val_len),
    reprobe_limit_(_reprobe_limit),
    reprobe_len_(bitsize(reprobe_limit_)),
    lval_len_(std::min(key_len_ + val_len_ - reprobe_len_, (unsigned int)bsizeof(word))),
    block(compute_offsets()),
    bld(block.len)
  {
    if(reprobe_len_ > bsizeof(word)) {
      std::ostringstream err;
      err << "The reprobe_limit (" << reprobe_limit_ << ", " << reprobe_len_
          << ") must be encoded in at most one word (" << bsizeof(word) << ")";
      throw std::length_error(err.str());
    }
    if(val_len_ > bsizeof(word))
      throw std::length_error("Val length must be less than the word size");
    if(key_len_ < reprobe_len_)
      throw std::length_error("Key length must be at least as large as to encode the reprobe_limit");
  }

  ~Offsets() {}

  unsigned int block_len() const { return block.len; }
  unsigned int block_word_len() const { return block.word_len; }
  unsigned int reprobe_len() const { return reprobe_len_; }
  unsigned int reprobe_limit() const { return reprobe_limit_; }
  word   reprobe_mask() const { return mask(reprobe_len_, 0); }
  unsigned int key_len() const { return key_len_; }
  unsigned int val_len() const { return val_len_; }
  unsigned int lval_len() const { return lval_len_; }
  word   get_max_val(bool large) const {
    return (((uint64_t)1) << (large ? lval_len_ : val_len_)) - 1;
  }

  /// Number of blocks that fit in a given amount of memory. Given an
  /// amount of memory mem, it returns the number of blocks that fit
  /// into mem and the actual memory this many block use.
  std::pair<size_t, size_t> blocks_for_records(size_t nb_records) const {
    size_t blocks = nb_records / bld;
    return std::make_pair(blocks, blocks * block.len);
  }

  word *word_offset(size_t id, const offset_t **o, const offset_t **lo, word * const base) const {
    uint64_t q, r;
    bld.division(id, q, r);
    word *w = base + (block.word_len * q);
    *o = &offsets[r].normal;
    *lo = &offsets[r].large;
    return w;
  }

private:
  const unsigned int           key_len_, val_len_;
  const unsigned int           reprobe_limit_, reprobe_len_, lval_len_;
  const block_info       block;
  const jflib::divisor64 bld;   // Fast divisor by block.len
  offset_pair_t    offsets[bsizeof(word)];

  block_info compute_offsets();
  bool add_key_offsets(unsigned int &cword, unsigned int &cboff, unsigned int add, bool& full_words);
  bool add_val_offsets(unsigned int &cword, unsigned int &cboff, unsigned int add);
  void set_key_offsets(Offsets::offset_t& key, unsigned int& cword, unsigned int& cboff, unsigned int len);
  void set_val_offsets(Offsets::offset_t& val, unsigned int& cword, unsigned int& cboff, unsigned int len);
  word mask(unsigned int length, unsigned int shift) const;
};

template<typename word>
bool Offsets<word>::add_key_offsets(unsigned int &cword, unsigned int &cboff, unsigned int add, bool& full_words)
{
  if(cboff + add <= bsizeof(word)) { // Not spilling over next word
    cboff  = (cboff + add) % bsizeof(word);
    cword += (cboff == 0);
    return false;
  }

  // Span multiple words. Take into account the extra set bit, one in each word
  size_t wcap  = bsizeof(word) - 1; // Word capacity withouth set bit
  add         -= wcap - cboff;  // Substract bits stored in first partial word including set bit
  full_words   = add >= wcap;
  cword       += 1 + add / wcap; // Add first word plus any extra complete word
  cboff        = add % wcap;    // Extra bits in last word
  cboff       += cboff > 0;     // Add set bit in last word if use partial word
  return true;
}

template<typename word>
bool Offsets<word>::add_val_offsets(unsigned int &cword, unsigned int &cboff, unsigned int add)
{
  unsigned int ocword  = cword;
  cboff         += add;
  cword         += cboff / bsizeof(word);
  cboff          = cboff % bsizeof(word);
  return cword > ocword && cboff > 0;
}

template<typename word>
word Offsets<word>::mask(unsigned int length, unsigned int shift) const
{
  if(length)
    return (((word)-1) >> (bsizeof(word) - length)) << shift;
  return (word)0;
}

template<typename word>
void Offsets<word>::set_key_offsets(Offsets::offset_t& offset, unsigned int& cword, unsigned int& cboff, unsigned int len) {
  unsigned int ocboff;
  bool   full_words;

  offset.key.woff    = cword;
  ocboff             = cboff;
  offset.key.boff    = cboff + 1;
  offset.key.lb_mask = mask(1, cboff);
  if(add_key_offsets(cword, cboff, len + 1, full_words)) {
    // Extra bits in last extra word
    offset.key.mask1      = mask(bsizeof(word) - ocboff, ocboff);
    offset.key.mask2      = mask(cboff, 0);
    offset.key.shift      = bsizeof(word) - 1 - ocboff - 1; // -1 for large bit, -1 for set bit
    offset.key.cshift     = cboff ? cboff - 1 : 0;
    offset.key.sb_mask1   = mask(1, bsizeof(word) - 1);
    offset.key.sb_mask2   = cboff ? mask(1, cboff - 1) : 0;
    offset.key.full_words = full_words;
  } else {
    offset.key.mask1      = mask(len + 1, ocboff);
    offset.key.mask2      = 0;
    offset.key.shift      = 0;
    offset.key.cshift     = 0;
    offset.key.sb_mask1   = 0;
    offset.key.sb_mask2   = 0;
    offset.key.full_words = false;
  }
}

template <typename word>
void Offsets<word>::set_val_offsets(Offsets::offset_t& offset, unsigned int& cword, unsigned int& cboff, unsigned int len) {
  unsigned int ocboff;

  offset.val.woff  = cword;
  offset.val.boff  = cboff;
  ocboff           = cboff;
  if(add_val_offsets(cword, cboff, len)) {
    offset.val.mask1  = mask(bsizeof(uint64_t) - ocboff, ocboff);
    offset.val.mask2  = mask(cboff, 0);
    offset.val.shift  = len - cboff;
    offset.val.cshift = cboff;
  } else {
    offset.val.mask1  = mask(len, ocboff);
    offset.val.mask2  = 0;
    offset.val.shift  = len;
    offset.val.cshift = 0;
  }
}

template<typename word>
typename Offsets<word>::block_info Offsets<word>::compute_offsets()
{
  offset_pair_t *offset = offsets;
  unsigned int   cword  = 0;    // current word in block
  unsigned int   cboff  = 0;    // current offset in word
  unsigned int   lcword;        // idem for large fields
  unsigned int   lcboff;

  memset(offsets, '\0', sizeof(offsets));
  do {
    // Save current offsets as starting point for large key
    lcword = cword;
    lcboff = cboff;

    set_key_offsets(offset->normal, cword, cboff, key_len_);
    set_val_offsets(offset->normal, cword, cboff, val_len_);

    set_key_offsets(offset->large, lcword, lcboff, reprobe_len_);
    set_val_offsets(offset->large, lcword, lcboff, lval_len_);

    offset++;
  } while(cboff != 0 && cboff < bsizeof(word) - 2);

  block_info res = { static_cast<unsigned int>(offset - offsets), cword + (cboff == 0 ? 0 : 1) };
  return res;
}
} // namespace jellyfish

#endif // __OFFSETS_KEY_VALUE_HPP__