/usr/include/jellyfish/offsets_key_value.hpp is in libjellyfish-2.0-dev 2.1.4-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 | /* This file is part of Jellyfish.
Jellyfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Jellyfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Jellyfish. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef __JELLYFISH_OFFSETS_KEY_VALUE_HPP__
#define __JELLYFISH_OFFSETS_KEY_VALUE_HPP__
#include <signal.h>
#include <iostream>
#include <sstream>
#include <jellyfish/misc.hpp>
#include <jellyfish/divisor.hpp>
namespace jellyfish {
/* A word is whatever aligned type used for atomic operations
* (CAS). Typically, a uint64_t. We store pairs of (key, value), in a
* bit packed fashion. The key and value can have abritrary size as
* long as they each fit in one word. A block is the largest number of
* (key, value) pair such that the first key, and only the first,
* starts at an aligned word.
*
* The key 0x0 is not valid. A key which fits completely within one
* word is not protected by a "set" bit. A key which straddle the
* boundary between two aligned words has a set bit in each parts.
*
* A value field can have any value and is initialized to 0x0. It has
* no "set" bit ever.
*
* A key is prefixed with a "large" bit. If this bit is 0, the key
* field is length key_len (not counting the possible set bits) and
* the value field has length val_len. If the large bit has value 1,
* the key field is just long enough to encode the number of
* reprobing hops to go backward to find the actual key. The
* remainder bits is used for the value field. In this scheme, we
* assume the length needed to encode the number of reprobes is much
* less than the length needed to encode the key.
*
* The size of the value field, for the normal and large field, is
* capped at 64. If there is more bits available, they are wasted.
*/
/* Offsets holds all the possible offset for a given combination of
* key length, value length and reprobe limit.
*/
template<typename word>
class Offsets {
public:
// woff: offset in words from beginning of block
// boff: offset in bits within that word. Paste large bit.
// shift: number of bits stored in first word, or shift to get to beginning of second word
// cshift: number of bits stored in last word
// mask1: includes the large bit and the set bit if any.
// mask2: mask in last word. Contains large and set bit if any. 0 if last word is full
// sb_mask[12]: mask for set bit in words 1 to last-1 and in last word, if any. set bit is the
// last usable bit of the field.
// lb_mask: mask for the large bit. It is the first bit of the key field.
// full words: need to copy full words
typedef struct {
struct key {
unsigned int woff, boff, shift, cshift;
word mask1, mask2, sb_mask1, sb_mask2, lb_mask;
bool full_words;
};
struct key key;
struct val {
unsigned int woff, boff, shift, cshift;
word mask1, mask2;
};
struct val val;
} offset_t;
typedef struct {
offset_t normal;
offset_t large;
} offset_pair_t;
struct block_info {
unsigned int len;
unsigned int word_len;
};
// Offsets() {}
Offsets(unsigned int _key_len, unsigned int _val_len, unsigned int _reprobe_limit) :
key_len_(_key_len),
val_len_(_val_len),
reprobe_limit_(_reprobe_limit),
reprobe_len_(bitsize(reprobe_limit_)),
lval_len_(std::min(key_len_ + val_len_ - reprobe_len_, (unsigned int)bsizeof(word))),
block(compute_offsets()),
bld(block.len)
{
if(reprobe_len_ > bsizeof(word)) {
std::ostringstream err;
err << "The reprobe_limit (" << reprobe_limit_ << ", " << reprobe_len_
<< ") must be encoded in at most one word (" << bsizeof(word) << ")";
throw std::length_error(err.str());
}
if(val_len_ > bsizeof(word))
throw std::length_error("Val length must be less than the word size");
if(key_len_ < reprobe_len_)
throw std::length_error("Key length must be at least as large as to encode the reprobe_limit");
}
~Offsets() {}
unsigned int block_len() const { return block.len; }
unsigned int block_word_len() const { return block.word_len; }
unsigned int reprobe_len() const { return reprobe_len_; }
unsigned int reprobe_limit() const { return reprobe_limit_; }
word reprobe_mask() const { return mask(reprobe_len_, 0); }
unsigned int key_len() const { return key_len_; }
unsigned int val_len() const { return val_len_; }
unsigned int lval_len() const { return lval_len_; }
word get_max_val(bool large) const {
return (((uint64_t)1) << (large ? lval_len_ : val_len_)) - 1;
}
/// Number of blocks that fit in a given amount of memory. Given an
/// amount of memory mem, it returns the number of blocks that fit
/// into mem and the actual memory this many block use.
std::pair<size_t, size_t> blocks_for_records(size_t nb_records) const {
size_t blocks = nb_records / bld;
return std::make_pair(blocks, blocks * block.len);
}
word *word_offset(size_t id, const offset_t **o, const offset_t **lo, word * const base) const {
uint64_t q, r;
bld.division(id, q, r);
word *w = base + (block.word_len * q);
*o = &offsets[r].normal;
*lo = &offsets[r].large;
return w;
}
private:
const unsigned int key_len_, val_len_;
const unsigned int reprobe_limit_, reprobe_len_, lval_len_;
const block_info block;
const jflib::divisor64 bld; // Fast divisor by block.len
offset_pair_t offsets[bsizeof(word)];
block_info compute_offsets();
bool add_key_offsets(unsigned int &cword, unsigned int &cboff, unsigned int add, bool& full_words);
bool add_val_offsets(unsigned int &cword, unsigned int &cboff, unsigned int add);
void set_key_offsets(Offsets::offset_t& key, unsigned int& cword, unsigned int& cboff, unsigned int len);
void set_val_offsets(Offsets::offset_t& val, unsigned int& cword, unsigned int& cboff, unsigned int len);
word mask(unsigned int length, unsigned int shift) const;
};
template<typename word>
bool Offsets<word>::add_key_offsets(unsigned int &cword, unsigned int &cboff, unsigned int add, bool& full_words)
{
if(cboff + add <= bsizeof(word)) { // Not spilling over next word
cboff = (cboff + add) % bsizeof(word);
cword += (cboff == 0);
return false;
}
// Span multiple words. Take into account the extra set bit, one in each word
size_t wcap = bsizeof(word) - 1; // Word capacity withouth set bit
add -= wcap - cboff; // Substract bits stored in first partial word including set bit
full_words = add >= wcap;
cword += 1 + add / wcap; // Add first word plus any extra complete word
cboff = add % wcap; // Extra bits in last word
cboff += cboff > 0; // Add set bit in last word if use partial word
return true;
}
template<typename word>
bool Offsets<word>::add_val_offsets(unsigned int &cword, unsigned int &cboff, unsigned int add)
{
unsigned int ocword = cword;
cboff += add;
cword += cboff / bsizeof(word);
cboff = cboff % bsizeof(word);
return cword > ocword && cboff > 0;
}
template<typename word>
word Offsets<word>::mask(unsigned int length, unsigned int shift) const
{
if(length)
return (((word)-1) >> (bsizeof(word) - length)) << shift;
return (word)0;
}
template<typename word>
void Offsets<word>::set_key_offsets(Offsets::offset_t& offset, unsigned int& cword, unsigned int& cboff, unsigned int len) {
unsigned int ocboff;
bool full_words;
offset.key.woff = cword;
ocboff = cboff;
offset.key.boff = cboff + 1;
offset.key.lb_mask = mask(1, cboff);
if(add_key_offsets(cword, cboff, len + 1, full_words)) {
// Extra bits in last extra word
offset.key.mask1 = mask(bsizeof(word) - ocboff, ocboff);
offset.key.mask2 = mask(cboff, 0);
offset.key.shift = bsizeof(word) - 1 - ocboff - 1; // -1 for large bit, -1 for set bit
offset.key.cshift = cboff ? cboff - 1 : 0;
offset.key.sb_mask1 = mask(1, bsizeof(word) - 1);
offset.key.sb_mask2 = cboff ? mask(1, cboff - 1) : 0;
offset.key.full_words = full_words;
} else {
offset.key.mask1 = mask(len + 1, ocboff);
offset.key.mask2 = 0;
offset.key.shift = 0;
offset.key.cshift = 0;
offset.key.sb_mask1 = 0;
offset.key.sb_mask2 = 0;
offset.key.full_words = false;
}
}
template <typename word>
void Offsets<word>::set_val_offsets(Offsets::offset_t& offset, unsigned int& cword, unsigned int& cboff, unsigned int len) {
unsigned int ocboff;
offset.val.woff = cword;
offset.val.boff = cboff;
ocboff = cboff;
if(add_val_offsets(cword, cboff, len)) {
offset.val.mask1 = mask(bsizeof(uint64_t) - ocboff, ocboff);
offset.val.mask2 = mask(cboff, 0);
offset.val.shift = len - cboff;
offset.val.cshift = cboff;
} else {
offset.val.mask1 = mask(len, ocboff);
offset.val.mask2 = 0;
offset.val.shift = len;
offset.val.cshift = 0;
}
}
template<typename word>
typename Offsets<word>::block_info Offsets<word>::compute_offsets()
{
offset_pair_t *offset = offsets;
unsigned int cword = 0; // current word in block
unsigned int cboff = 0; // current offset in word
unsigned int lcword; // idem for large fields
unsigned int lcboff;
memset(offsets, '\0', sizeof(offsets));
do {
// Save current offsets as starting point for large key
lcword = cword;
lcboff = cboff;
set_key_offsets(offset->normal, cword, cboff, key_len_);
set_val_offsets(offset->normal, cword, cboff, val_len_);
set_key_offsets(offset->large, lcword, lcboff, reprobe_len_);
set_val_offsets(offset->large, lcword, lcboff, lval_len_);
offset++;
} while(cboff != 0 && cboff < bsizeof(word) - 2);
block_info res = { static_cast<unsigned int>(offset - offsets), cword + (cboff == 0 ? 0 : 1) };
return res;
}
} // namespace jellyfish
#endif // __OFFSETS_KEY_VALUE_HPP__
|