This file is indexed.

/usr/include/linbox/field/modular.h is in liblinbox-dev 1.3.2-1.1+b1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
/* linbox/field/modular.h
 * Copyright (C) 1999-2001 William J Turner,
 *               2001 Bradford Hovinen
 *
 * Written by William J Turner <wjturner@math.ncsu.edu>,
 *            Bradford Hovinen <hovinen@cis.udel.edu>
 *
 * ------------------------------------
 * 2002-04-10 Bradford Hovinen <hovinen@cis.udel.edu>
 *
 * LargeModular is now replace by a class Modular parameterized on the element
 * type. So, the old LargeModular is equivalent to Modular<integer>. All other
 * interface details are exactly the same.
 *
 * Renamed from large-modular.h to modular.h
 * ------------------------------------
 *
 *
 * ========LICENCE========
 * This file is part of the library LinBox.
 *
 * LinBox is free software: you can redistribute it and/or modify
 * it under the terms of the  GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 * ========LICENCE========
 *.
 */

/*! @file field/modular.h
 * @ingroup field
 * @brief A Modular field is a representations of <code>Z/mZ</code>.
 * This file groups many implementations/specialisations of modular fields.
 *   - Modular arithmetic is provided in the <code>ModularXXX<T></code> classes.
 *   - Specialisations for \ref FieldAXPY, \ref MVProductDomain, \ref DotProductDomain.
 *   - Random Iterators
 *   .
 *
 * @bug move Element& init(const Element&) to FFPACK. use using more..
 */

#ifndef __LINBOX_field_modular_H
#define __LINBOX_field_modular_H

#include <iostream>
#include <climits>
#include <cmath>

#include "linbox/integer.h"
#include "linbox/vector/vector-domain.h"
#include "linbox/matrix/matrix-domain.h"
#include "linbox/field/field-interface.h"
#include "linbox/util/field-axpy.h"
#include "linbox/vector/vector-traits.h"
#include "linbox/linbox-config.h"
#include "linbox/field/field-traits.h"


// Namespace in which all LinBox code resides
namespace LinBox
{
	template <class Element>
	class Modular;

	template <class Ring>
	struct ClassifyRing;

	template <class Element>
	struct ClassifyRing<Modular<Element> >
	{
		typedef RingCategories::ModularTag categoryTag;
	};

	template <class Element>
	struct ClassifyRing<Modular<Element> const>
	{
		typedef RingCategories::ModularTag categoryTag;
	};


	/** * <!-- @name ModularBase-->
	 * \brief Base for prime fields where the elements are represented by various primitive types (and their operations).
	 * \ingroup field
	 * \defgroup Fields Fields <!--for old \ref Fields...-->
	 *
	 *
	 * Normally use it's children.  This class is of interest for the
	 * developer of a new field representation.
	 *
	 *
	 * This parameterized field can be used to construct any prime field.
	 * Typical use would be Modular<integer> for integers modulo a large
	 * prime, Modular<long> Modular<long long> for integers modulo a wordsize
	 * prime, etc. for integers modulo a half-wordsize prime.
	 */
	template <class _Element>
	class ModularBase {
	public:

		/*- Element type
		*/
		typedef _Element Element;

		/*- Random iterator generator type.
		 * It must meet the common object interface of random element generators
		 * as given in the the archetype RandIterArchetype.
		 */
		class RandIter;

		/*- @name Object Management
		*/
		//@{

		/*- Default constructor.
		*/
		ModularBase (void) {}

		/*- Constructor from an element type.
		 * Sets the modulus of the field throug the static member of the
		 * element type.
		 * @param modulus constant reference to integer prime modulus
		 */
		ModularBase (unsigned long modulus, int e = 1) :
			_modulus ((Element)modulus)
		{}

		/*- Constructor from an integer.
		 * Sets the modulus of the field throug the static member of the
		 * element type.
		 * @param modulus constant reference to integer prime modulus
		 */
		ModularBase (const integer &modulus) :
			_modulus ((Element) modulus)
		{}

		/*- Copy constructor.
		 * Constructs Modular object by copying the field.
		 * This is required to allow field objects to be passed by value
		 * into functions.
		 * @param  F Modular object.
		 */
		ModularBase (const ModularBase<Element> &F) :
			_modulus (F._modulus)
		{}

		/*- Conversion of field base element to a template class T.
		 * This function assumes the output field base element x has already been
		 * constructed, but that it is not already initialized.
		 * @return reference to template class T.
		 * @param x template class T to contain output (reference returned).
		 * @param y constant field base element.
		 */
		integer &convert (integer &x, const Element &y) const
		{
			return x = y;
		}

		double &convert (double& x, const Element &y) const
		{
			return  x= (double) y;
		}

		float &convert (float& x, const Element &y) const
		{
			return  x= (float) y;
		}

		/*- Assignment of one field base element to another.
		 * This function assumes both field base elements have already been
		 * constructed and initialized.
		 * @return reference to x
		 * @param  x field base element (reference returned).
		 * @param  y field base element.
		 */
		Element &assign (Element &x, const Element &y) const
		{
			return x = y;
		}

		/*- Cardinality.
		 * Return integer representing cardinality of the domain.
		 * Returns a non-negative integer for all domains with finite
		 * cardinality, and returns -1 to signify a domain of infinite
		 * cardinality.
		 * @return integer representing cardinality of the domain
		 */
		integer &cardinality (integer &c) const
		{
			return c = _modulus;
		}

		integer cardinality () const
		{
			return  _modulus;
		}

		/*- Characteristic.
		 * Return integer representing characteristic of the domain.
		 * Returns a positive integer to all domains with finite characteristic,
		 * and returns 0 to signify a domain of infinite characteristic.
		 * @return integer representing characteristic of the domain.
		 */
		integer &characteristic (integer &c) const
		{
			return c = _modulus;
		}

		unsigned long &characteristic (unsigned long &c) const
		{
			return c = _modulus;
		}


		integer characteristic () const
		{
			return  _modulus;
		}

		//@} Object Management

		/*- @name Arithmetic Operations
		 * x <- y op z; x <- op y
		 * These operations require all elements, including x, to be initialized
		 * before the operation is called.  Uninitialized field base elements will
		 * give undefined results.
		 */
		//@{

		/*- Equality of two elements.
		 * This function assumes both field base elements have already been
		 * constructed and initialized.
		 * @return boolean true if equal, false if not.
		 * @param  x field base element
		 * @param  y field base element
		 */
		bool areEqual (const Element &x, const Element &y) const
		{
			return x == y;
		}

		/*- Zero equality.
		 * Test if field base element is equal to zero.
		 * This function assumes the field base element has already been
		 * constructed and initialized.
		 * @return boolean true if equals zero, false if not.
		 * @param  x field base element.
		 */
		bool isZero (const Element &x) const
		{
			return x == 0;
		}

		/*- One equality.
		 * Test if field base element is equal to one.
		 * This function assumes the field base element has already been
		 * constructed and initialized.
		 * @return boolean true if equals one, false if not.
		 * @param  x field base element.
		 */
		bool isOne (const Element &x) const
		{
			return x == 1;
		}


		//@} Arithmetic Operations

		/*- @name Input/Output Operations */
		//@{

		/*- Print field.
		 * @return output stream to which field is written.
		 * @param  os  output stream to which field is written.
		 */
		std::ostream &write (std::ostream &os) const
		{
			return os << "Modular field, mod " << _modulus;
		}

		/*- Read field.
		 * @return input stream from which field is read.
		 * @param  is  input stream from which field is read.
		 */
		std::istream &read (std::istream &is) {
			return is >> _modulus;
		}


		/*- Print field base element.
		 * This function assumes the field base element has already been
		 * constructed and initialized.
		 * @return output stream to which field base element is written.
		 * @param  os  output stream to which field base element is written.
		 * @param  x   field base element.
		 */
		std::ostream &write (std::ostream &os, const Element &x) const
		{
			return os << (int) x;
		}


		/*- Read field base element.
		 * This function assumes the field base element has already been
		 * constructed and initialized.
		 * @return input stream from which field base element is read.
		 * @param  is  input stream from which field base element is read.
		 * @param  x   field base element.
		 */
		std::istream &read (std::istream &is, Element &x) const
		{
			integer tmp;

			is >> tmp;

			x = abs (tmp) % integer (_modulus);
			if (tmp < 0) x = _modulus - x;

			return is;
		}

		//@}

	protected:

		/// Private (non-static) element for modulus
		Element _modulus;

	}; // class ModularBase

	/* .. such comments as here should be on specialization...
	 * @param element Element type, e.g. long or integer
	 * @param Intermediate Type to use for intermediate computations. This
	 *                     should be a data type that can support integers
	 *                     twice the length of the maximal modulus used.
	 *
	 * The primality of the modulus will not be checked, so it is the
	 * programmer's responsibility to supply a prime modulus.  This class
	 * implements a field of unparameterized integers modulo a prime integer.
	 * Field has (non-static) member to contain modulus of field.
	 */

	/** @brief Prime fields of positive characteristic implemented directly in LinBox.
	 *
	 * This parameterized field can be used to construct prime fields.
	 * Typical use would be Modular<integer> for integers modulo a large
	 * prime, Modular<uint32_t>, Modular<int32_t>, or Modular<double> for
	 * integers modulo a wordsize prime.  Each of those has specialized
	 * performance features suitable to certain applications.
	 */
	template <class _Element>
	class Modular : public ModularBase<_Element> {
	public:
		typedef _Element Element;
		typedef Modular<_Element>     Self_t;
		typedef ModularBase<_Element> Father_t;
		typedef typename ModularBase<_Element>::RandIter RandIter;
		const Element zero,one, mOne;

		/*- @name Object Management
		 * @brief see \ref FieldArchetype  for member specs.
		 */
		//@{

		//private:
		/*- Default constructor.
		*/
		Modular () :
			zero(0),one(1),mOne(0)
		{}

		/*- Constructor from an element type
		 * Sets the modulus of the field throug the static member of the
		 * element type.
		 * @param modulus constant reference to integer prime modulus
		 */
		Modular (unsigned long modulus, unsigned long = 1) :
			ModularBase<_Element> (modulus),zero(0),one(1),mOne(modulus-1)
		{}


		/*- Constructor from an integer
		 * Sets the modulus of the field throug the static member of the
		 * element type.
		 * @param modulus constant reference to integer prime modulus
		 */
		Modular (const integer &modulus) :
			ModularBase<_Element> (modulus),zero(0),one(1),mOne(modulus-1)
		{}

		/* Assignment operator
		 * Required by the archetype
		 *
		 * @param F constant reference to Modular object
		 * @return reference to Modular object for self
		 */
		const Modular &operator=(const Modular &F)
		{
			ModularBase<Element>::_modulus = F._modulus;
			F.assign(const_cast<Element&>(one),F.one);
			F.assign(const_cast<Element&>(zero),F.zero);
			F.assign(const_cast<Element&>(mOne),F.mOne);

			return *this;
		}
	public:

		static inline Element getMaxModulus()
		{
			return Element((1ULL<<(sizeof(Element)*8-1))-1);
		}


		/*- Initialization of field base element from an integer.
		 * Behaves like C++ allocator construct.
		 * This function assumes the output field base element x has already been
		 * constructed, but that it is not already initialized.
		 * This is not a specialization of the template function because
		 * such a specialization is not allowed inside the class declaration.
		 * @return reference to field base element.
		 * @param x field base element to contain output (reference returned).
		 * @param y integer.
		 */
		Element &init (Element &x, const integer &y ) const
		{
			x = y % ModularBase<Element>::_modulus;
			if (x < 0) x += ModularBase<Element>::_modulus;
			return x;
		}

		Element &init (Element &x, const size_t &y ) const
		{
			x = (Element) y % ModularBase<Element>::_modulus;
			if (x < 0) x += ModularBase<Element>::_modulus;
			return x;
		}

		Element &init (Element &x, const int y ) const
		{
			x = y % ModularBase<Element>::_modulus;
			if (x < 0) x += ModularBase<Element>::_modulus;
			return x;
		}

		Element &init (Element &x, const long int y) const
		{
			x = y % ModularBase<Element>::_modulus;
			if (x < 0) x += ModularBase<Element>::_modulus;
			return x;
		}

		/*- Initialization of field base element from a double.
		 * Behaves like C++ allocator construct.
		 * This function assumes the output field base element x has already been
		 * constructed, but that it is not already initialized.
		 * This is not a specialization of the template function because
		 * such a specialization is not allowed inside the class declaration.
		 * @return reference to field base element.
		 * @param x field base element to contain output (reference returned).
		 * @param y integer.
		 */
		Element &init (Element &x, const double &y) const
		{
			double z = fmod(y, (double)ModularBase<Element>::_modulus);
			if (z < 0) z += (double) ModularBase<Element>::_modulus;
			return x = (Element) (z+.5);
		}

		Element &init (Element &x, const float &y) const
		{
			float z = fmod(y, (float)ModularBase<Element>::_modulus);
			if (z < 0) z += (float) ModularBase<Element>::_modulus;
			return x = (Element) (z+.5);
		}

		Element &init(Element &x) const
		{
			return x = 0 ;
		}

		//@}
		/*- @name Arithmetic Operations
		 * @brief see \ref FieldArchetype  for member specs.
		 * x <- y op z; x <- op y
		 * These operations require all elements, including x, to be initialized
		 * before the operation is called.  Uninitialized field base elements will
		 * give undefined results.
		 */
		//@{

		/*- Addition.
		 * x = y + z
		 * This function assumes all the field base elements have already been
		 * constructed and initialized.
		 * @return reference to x.
		 * @param  x field base element (reference returned).
		 * @param  y field base element.
		 * @param  z field base element.
		 */
		Element &add (Element &x, const Element &y, const Element &z) const
		{
			x = y + z;
			if (x >= ModularBase<Element>::_modulus) x -= ModularBase<Element>::_modulus;
			return x;
		}

		/* Subtraction.
		 * x = y - z
		 * This function assumes all the field base elements have already been
		 * constructed and initialized.
		 * @return reference to x.
		 * @param  x field base element (reference returned).
		 * @param  y field base element.
		 * @param  z field base element.
		 */
		Element &sub (Element &x, const Element &y, const Element &z) const
		{
			x = y - z;
			if (x < 0) x += ModularBase<Element>::_modulus;
			return x;
		}

		/* Multiplication.
		 * x = y * z
		 * This function assumes all the field base elements have already been
		 * constructed and initialized.
		 * @return reference to x.
		 * @param  x field base element (reference returned).
		 * @param  y field base element.
		 * @param  z field base element.
		 */
		Element &mul (Element &x, const Element &y, const Element &z) const
		{
			return x = (y * z) % ModularBase<Element>::_modulus;
		}

		/* Division.
		 * x = y / z
		 * This function assumes all the field base elements have already been
		 * constructed and initialized.
		 * @return reference to x.
		 * @param  x field base element (reference returned).
		 * @param  y field base element.
		 * @param  z field base element.
		 */
		Element &div (Element &x, const Element &y, const Element &z) const
		{
			Element temp;
			inv (temp, z);
			return mul (x, y, temp);
		}

		/* Additive Inverse (Negation).
		 * x = - y
		 * This function assumes both field base elements have already been
		 * constructed and initialized.
		 * @return reference to x.
		 * @param  x field base element (reference returned).
		 * @param  y field base element.
		 */
		Element &neg (Element &x, const Element &y) const
		{
			if (y == 0)
				return x = y;
			else
				return x = ModularBase<Element>::_modulus - y;
		}

		/* Multiplicative Inverse.
		 * x = 1 / y
		 * This function assumes both field base elements have already been
		 * constructed and initialized.
		 * @return reference to x.
		 * @param  x field base element (reference returned).
		 * @param  y field base element.
		 */
		Element &inv (Element &x, const Element &y) const
		{
			// The extended Euclidean algoritm
			Element x_int, y_int, q, tx, ty, temp;
			x_int = ModularBase<Element>::_modulus;
			y_int = y;
			tx = 0;
			ty = 1;

			while (y_int != 0) {
				// always: gcd (modulus,residue) = gcd (x_int,y_int)
				//         sx*modulus + tx*residue = x_int
				//         sy*modulus + ty*residue = y_int
				q = x_int / y_int; // integer quotient
				temp = y_int;  y_int  = x_int  - q*y_int;  x_int  = temp;
				temp = ty; ty = tx - q*ty; tx = temp;
			}

			// now x_int = gcd (modulus,residue)
			x = tx;
			if (x < 0) x += ModularBase<Element>::_modulus;

			return x;
		}

		/* Natural AXPY.
		 * r  = a * x + y
		 * This function assumes all field elements have already been
		 * constructed and initialized.
		 * @return reference to r.
		 * @param  r field element (reference returned).
		 * @param  a field element.
		 * @param  x field element.
		 * @param  y field element.
		 */
		Element &axpy (Element &r,
			       const Element &a,
			       const Element &x,
			       const Element &y) const
		{
			r = (a * x + y) % ModularBase<Element>::_modulus;
			if (r < 0) r += ModularBase<Element>::_modulus;
			return r;
		}

		//@} Arithmetic Operations

		/*- @name Inplace Arithmetic Operations
		 * @brief see \ref FieldArchetype  for member specs.
		 * x <- x op y; x <- op x
		 */
		//@{

		/*- Inplace Addition.
		 * x += y
		 * This function assumes both field base elements have already been
		 * constructed and initialized.
		 * @return reference to x.
		 * @param  x field base element (reference returned).
		 * @param  y field base element.
		 */
		Element &addin (Element &x, const Element &y) const
		{
			x += y;
			if (x >= ModularBase<Element>::_modulus) x -= ModularBase<Element>::_modulus;
			return x;
		}

		/* Inplace Subtraction.
		 * x -= y
		 * This function assumes both field base elements have already been
		 * constructed and initialized.
		 * @return reference to x.
		 * @param  x field base element (reference returned).
		 * @param  y field base element.
		 */
		Element &subin (Element &x, const Element &y) const
		{
			x -= y;
			if (x < 0) x += ModularBase<Element>::_modulus;
			return x;
		}

		/* Inplace Multiplication.
		 * x *= y
		 * This function assumes both field base elements have already been
		 * constructed and initialized.
		 * @return reference to x.
		 * @param  x field base element (reference returned).
		 * @param  y field base element.
		 */
		Element &mulin (Element &x, const Element &y) const
		{
			x *= y;
			x %= ModularBase<Element>::_modulus;
			return x;
		}

		/* Inplace Division.
		 * x /= y
		 * This function assumes both field base elements have already been
		 * constructed and initialized.
		 * @return reference to x.
		 * @param  x field base element (reference returned).
		 * @param  y field base element.
		 */
		Element &divin (Element &x, const Element &y) const
		{
			Element temp;
			inv (temp, y);
			return mulin (x, temp);
		}

		/* Inplace Additive Inverse (Inplace Negation).
		 * x = - x
		 * This function assumes the field base element has already been
		 * constructed and initialized.
		 * @return reference to x.
		 * @param  x field base element (reference returned).
		 */
		Element &negin (Element &x) const
		{
			if (x == 0)
				return x;
			else
				return x = ModularBase<Element>::_modulus - x;
		}

		/* Inplace Multiplicative Inverse.
		 * x = 1 / x
		 * This function assumes the field base elementhas already been
		 * constructed and initialized.
		 * @return reference to x.
		 * @param  x field base element (reference returned).
		 */
		Element &invin (Element &x) const
		{
			return inv (x, x);
		}

		/* Inplace AXPY.
		 * r  += a * x
		 * This function assumes all field elements have already been
		 * constructed and initialized.
		 * Purely virtual
		 * @return reference to r.
		 * @param  r field element (reference returned).
		 * @param  a field element.
		 * @param  x field element.
		 */
		Element &axpyin (Element &r, const Element &a, const Element &x) const
		{
			r = (r + a * x) % ModularBase<Element>::_modulus;
			if (r < 0) r += ModularBase<Element>::_modulus;
			return r;
		}

		//@} Inplace Arithmetic Operations

	private:

		friend class FieldAXPY<Modular<Element> >;

	}; // class Modular


	/*! Specialization of FieldAXPY for parameterized modular field */

	template <class _Element>
	class FieldAXPY<Modular<_Element> > {
	public:

		typedef _Element Element;
		typedef Modular<_Element> Field;

		FieldAXPY (const Field &F) :
			_field (F)
		{ _y = 0; }
		FieldAXPY (const FieldAXPY<Modular<Element> > &faxpy) :
			_field (faxpy._field), _y (faxpy._y)
		{}

		FieldAXPY<Modular <Element> > &operator = (const FieldAXPY &faxpy)
		{
			_field = faxpy._field;
			_y = faxpy._y;
			return *this;
		}

		inline Element& mulacc (const Element &a, const Element &x)
		{
			return accumulate(a * x);
		}

		inline Element& accumulate (const Element &t)
		{
			return _y+=t;
		}

		inline Element &get (Element &y) { _y %= _field._modulus; y = _y; return y;
		}

		inline FieldAXPY &assign (const Element y)
		{
			_y = y;
			return *this;
		}

		inline void reset() {
			_field.init(_y, 0);
		}

	private:

		Field _field;
		Element _y;
	};


	template <>
	inline std::ostream& ModularBase<Integer>::write (std::ostream &os) const
	{
		return os << "GMP integers mod " << _modulus;
	}

	template <>
	inline integer& Modular<integer>::init (integer& x, const double& y) const
	{
		integer tmp = (integer)y % _modulus;
		if (tmp<0) tmp += _modulus;
		return x = tmp;
	}


} // namespace LinBox

#include "linbox/field/Modular/modular-unsigned.h"
#include "linbox/randiter/modular.h"
#include "linbox/field/Modular/modular-int32.h"
#ifdef __LINBOX_HAVE_INT64
#include "linbox/field/Modular/modular-int64.h"
#endif
#include "linbox/field/Modular/modular-short.h"
#include "linbox/field/Modular/modular-byte.h"
#include "linbox/field/Modular/modular-double.h"
#include "linbox/field/Modular/modular-float.h"

#endif // __LINBOX_field_modular_H


// vim:sts=8:sw=8:ts=8:noet:sr:cino=>s,f0,{0,g0,(0,:0,t0,+0,=s
// Local Variables:
// mode: C++
// tab-width: 8
// indent-tabs-mode: nil
// c-basic-offset: 8
// End: