/usr/include/m4ri/brilliantrussian.h is in libm4ri-dev 20140914-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 | /**
* \file brilliantrussian.h
* \brief M4RI and M4RM.
*
* \author Gregory Bard <bard@fordham.edu>
* \author Martin Albrecht <martinralbrecht@googlemail.com>
*
* \note For reference see Gregory Bard; Accelerating Cryptanalysis with
* the Method of Four Russians; 2006;
* http://eprint.iacr.org/2006/251.pdf
*/
#ifndef M4RI_BRILLIANTRUSSIAN_H
#define M4RI_BRILLIANTRUSSIAN_H
/*******************************************************************
*
* M4RI: Linear Algebra over GF(2)
*
* Copyright (C) 2007, 2008 Gregory Bard <bard@fordham.edu>
* Copyright (C) 2008-2010 Martin Albrecht <martinralbrecht@googlemail.com>
*
* Distributed under the terms of the GNU General Public License (GPL)
* version 2 or higher.
*
* This code is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* The full text of the GPL is available at:
*
* http://www.gnu.org/licenses/
*
********************************************************************/
#include <math.h>
#include <string.h>
#include <stdlib.h>
#include <m4ri/mzd.h>
#include <m4ri/mzp.h>
/**
* \brief Constructs all possible \f$2^k\f$ row combinations using the gray
* code table.
*
* \param M matrix to generate the tables from
* \param r the starting row
* \param c the starting column (only exact up to block)
* \param k
* \param T prealloced matrix of dimension \f$2^k\f$ x m->ncols
* \param L prealloced table of length \f$2^k\f$
*/
void mzd_make_table(mzd_t const *M, rci_t r, rci_t c, int k, mzd_t *T, rci_t *L);
/**
* \brief The function looks up k bits from position i,startcol in
* each row and adds the appropriate row from T to the row i.
*
* This process is iterated for i from startrow to stoprow
* (exclusive).
*
* \param M Matrix to operate on
* \param startrow top row which is operated on
* \param endrow bottom row which is operated on
* \param startcol Starting column for addition
* \param k M4RI parameter
* \param T contains the correct row to be added
* \param L Contains row number to be added
*/
void mzd_process_rows(mzd_t *M, rci_t startrow, rci_t endrow, rci_t startcol, int k, mzd_t const *T, rci_t const *L);
/**
* \brief Same as mzd_process_rows but works with two Gray code tables
* in parallel.
*
* \param M Matrix to operate on
* \param startrow top row which is operated on
* \param endrow bottom row which is operated on
* \param startcol Starting column for addition
* \param k M4RI parameter
* \param T0 contains the correct row to be added
* \param L0 Contains row number to be added
* \param T1 contains the correct row to be added
* \param L1 Contains row number to be added
*/
void mzd_process_rows2(mzd_t *M, rci_t startrow, rci_t endrow, rci_t startcol, int k, mzd_t const *T0, rci_t const *L0, mzd_t const *T1, rci_t const *L1);
/**
* \brief Same as mzd_process_rows but works with three Gray code tables
* in parallel.
*
* \param M Matrix to operate on
* \param startrow top row which is operated on
* \param endrow bottom row which is operated on
* \param startcol Starting column for addition
* \param k M4RI parameter
* \param T0 contains the correct row to be added
* \param L0 Contains row number to be added
* \param T1 contains the correct row to be added
* \param L1 Contains row number to be added
* \param T2 contains the correct row to be added
* \param L2 Contains row number to be added
*/
void mzd_process_rows3(mzd_t *M, rci_t startrow, rci_t endrow, rci_t startcol, int k,
mzd_t const *T0, rci_t const *L0, mzd_t const *T1, rci_t const *L1,
mzd_t const *T2, rci_t const *L2);
/**
* \brief Same as mzd_process_rows but works with four Gray code tables
* in parallel.
*
* \param M Matrix to operate on
* \param startrow top row which is operated on
* \param endrow bottom row which is operated on
* \param startcol Starting column for addition
* \param k M4RI parameter
* \param T0 contains the correct row to be added
* \param L0 Contains row number to be added
* \param T1 contains the correct row to be added
* \param L1 Contains row number to be added
* \param T2 contains the correct row to be added
* \param L2 Contains row number to be added
* \param T3 contains the correct row to be added
* \param L3 Contains row number to be added
*/
void mzd_process_rows4(mzd_t *M, rci_t startrow, rci_t endrow, rci_t startcol, int k,
mzd_t const *T0, rci_t const *L0, mzd_t const *T1, rci_t const *L1,
mzd_t const *T2, rci_t const *L2, mzd_t const *T3, rci_t const *L3);
/**
* \brief Same as mzd_process_rows but works with five Gray code tables
* in parallel.
*
* \param M Matrix to operate on
* \param startrow top row which is operated on
* \param endrow bottom row which is operated on
* \param startcol Starting column for addition
* \param k M4RI parameter
* \param T0 contains the correct row to be added
* \param L0 Contains row number to be added
* \param T1 contains the correct row to be added
* \param L1 Contains row number to be added
* \param T2 contains the correct row to be added
* \param L2 Contains row number to be added
* \param T3 contains the correct row to be added
* \param L3 Contains row number to be added
* \param T4 contains the correct row to be added
* \param L4 Contains row number to be added
*/
void mzd_process_rows5(mzd_t *M, rci_t startrow, rci_t endrow, rci_t startcol, int k,
mzd_t const *T0, rci_t const *L0, mzd_t const *T1, rci_t const *L1,
mzd_t const *T2, rci_t const *L2, mzd_t const *T3, rci_t const *L3,
mzd_t const *T4, rci_t const *L4);
/**
* \brief Same as mzd_process_rows but works with six Gray code tables
* in parallel.
*
* \param M Matrix to operate on
* \param startrow top row which is operated on
* \param endrow bottom row which is operated on
* \param startcol Starting column for addition
* \param k M4RI parameter
* \param T0 contains the correct row to be added
* \param L0 Contains row number to be added
* \param T1 contains the correct row to be added
* \param L1 Contains row number to be added
* \param T2 contains the correct row to be added
* \param L2 Contains row number to be added
* \param T3 contains the correct row to be added
* \param L3 Contains row number to be added
* \param T4 contains the correct row to be added
* \param L4 Contains row number to be added
* \param T5 contains the correct row to be added
* \param L5 Contains row number to be added
*/
void mzd_process_rows6(mzd_t *M, rci_t startrow, rci_t endrow, rci_t startcol, int k,
mzd_t const *T0, rci_t const *L0, mzd_t const *T1, rci_t const *L1,
mzd_t const *T2, rci_t const *L2, mzd_t const *T3, rci_t const *L3,
mzd_t const *T4, rci_t const *L4, mzd_t const *T5, rci_t const *L5);
/**
* \brief Matrix elimination using the 'Method of the Four Russians'
* (M4RI).
*
* The M4RI algorithm was proposed in Gregory Bard; Accelerating
* Cryptanalysis with the Method of Four Russians; 2006;
* http://eprint.iacr.org/2006/251
*
* Our implementatation is discussed in in Martin Albrecht and Clément
* Pernet; Efficient Decomposition of Dense Matrices over GF(2);
* http://arxiv.org/abs/1006.1744
*
* \param M Matrix to be reduced.
* \param full Return the reduced row echelon form, not only upper triangular form.
* \param k M4RI parameter, may be 0 for auto-choose.
*
* \example testsuite/test_elimination.c
* \example testsuite/bench_elimination.c
*
* \return Rank of A.
*/
rci_t _mzd_echelonize_m4ri(mzd_t *A, const int full, int k, int heuristic, const double threshold);
/**
* \brief Given a matrix in upper triangular form compute the reduced row
* echelon form of that matrix.
*
* \param M Matrix to be reduced.
* \param k M4RI parameter, may be 0 for auto-choose.
*
*
*/
void mzd_top_echelonize_m4ri(mzd_t *M, int k);
/**
* \brief Given a matrix in upper triangular form compute the reduced
* row echelon form of that matrix but only start to do anything for
* the pivot at (r,c).
*
* \param A Matrix to be reduced.
* \param k M4RI parameter, may be 0 for auto-choose.
* \param r Row index.
* \param c Column index.
* \param max_r Only clear top max_r rows.
*
*
*/
rci_t _mzd_top_echelonize_m4ri(mzd_t *A, int k, rci_t r, rci_t c, rci_t max_r);
/**
* \brief Invert the matrix src using Konrod's method.
*
* \param dst Matrix to hold the inverse (may be NULL)
* \param src Matrix to be inverted.
* \param k Table size parameter, may be 0 for automatic choice.
*
*
* \return Inverse of src if src has full rank
*/
mzd_t *mzd_inv_m4ri(mzd_t *dst, const mzd_t* src, int k);
/**
* \brief Matrix multiplication using Konrod's method, i.e. compute C
* such that C == AB.
*
* This is the convenient wrapper function, please see _mzd_mul_m4rm
* for authors and implementation details.
*
* \param C Preallocated product matrix, may be NULL for automatic creation.
* \param A Input matrix A
* \param B Input matrix B
* \param k M4RI parameter, may be 0 for auto-choose.
*
*
* \return Pointer to C.
*/
mzd_t *mzd_mul_m4rm(mzd_t *C, mzd_t const *A, mzd_t const *B, int k);
/**
* Set C to C + AB using Konrod's method.
*
* This is the convenient wrapper function, please see _mzd_mul_m4rm
* for authors and implementation details.
*
* \param C Preallocated product matrix, may be NULL for zero matrix.
* \param A Input matrix A
* \param B Input matrix B
* \param k M4RI parameter, may be 0 for auto-choose.
*
*
* \return Pointer to C.
*/
mzd_t *mzd_addmul_m4rm(mzd_t *C, mzd_t const *A, mzd_t const *B, int k);
/**
* \brief Matrix multiplication using Konrod's method, i.e. compute C such
* that C == AB.
*
* This is the actual implementation.
*
* This function is described in Martin Albrecht, Gregory Bard and
* William Hart; Efficient Multiplication of Dense Matrices over
* GF(2); pre-print available at http://arxiv.org/abs/0811.1714
*
* \param C Preallocated product matrix.
* \param A Input matrix A
* \param B Input matrix B
* \param k M4RI parameter, may be 0 for auto-choose.
* \param clear clear the matrix C first
*
* \author Martin Albrecht -- initial implementation
* \author William Hart -- block matrix implementation, use of several
* Gray code tables, general speed-ups
*
*
* \return Pointer to C.
*/
mzd_t *_mzd_mul_m4rm(mzd_t *C, mzd_t const *A, mzd_t const *B, int k, int clear);
#endif // M4RI_BRILLIANTRUSSIAN_H
|