This file is indexed.

/usr/include/mlpack/methods/nca/nca_softmax_error_function_impl.hpp is in libmlpack-dev 1.0.10-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
/**
 * @file nca_softmax_impl.h
 * @author Ryan Curtin
 *
 * Implementation of the Softmax error function.
 *
 * This file is part of MLPACK 1.0.10.
 *
 * MLPACK is free software: you can redistribute it and/or modify it under the
 * terms of the GNU Lesser General Public License as published by the Free
 * Software Foundation, either version 3 of the License, or (at your option) any
 * later version.
 *
 * MLPACK is distributed in the hope that it will be useful, but WITHOUT ANY
 * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
 * A PARTICULAR PURPOSE.  See the GNU Lesser General Public License for more
 * details (LICENSE.txt).
 *
 * You should have received a copy of the GNU General Public License along with
 * MLPACK.  If not, see <http://www.gnu.org/licenses/>.
 */
#ifndef __MLPACK_METHODS_NCA_NCA_SOFTMAX_ERROR_FUNCTCLIN_IMPL_H
#define __MLPACK_METHODS_NCA_NCA_SOFTMAX_ERROR_FUNCTCLIN_IMPL_H

// In case it hasn't been included already.
#include "nca_softmax_error_function.hpp"

namespace mlpack {
namespace nca {

// Initialize with the given kernel.
template<typename MetricType>
SoftmaxErrorFunction<MetricType>::SoftmaxErrorFunction(
    const arma::mat& dataset,
    const arma::Col<size_t>& labels,
    MetricType metric) :
    dataset(dataset),
    labels(labels),
    metric(metric),
    precalculated(false)
{ /* nothing to do */ }

//! The non-separable implementation, which uses Precalculate() to save time.
template<typename MetricType>
double SoftmaxErrorFunction<MetricType>::Evaluate(const arma::mat& coordinates)
{
  // Calculate the denominators and numerators, if necessary.
  Precalculate(coordinates);

  return -accu(p); // Sum of p_i for all i.  We negate because our solver
                   // minimizes, not maximizes.
};

//! The separated objective function, which does not use Precalculate().
template<typename MetricType>
double SoftmaxErrorFunction<MetricType>::Evaluate(const arma::mat& coordinates,
                                                  const size_t i)
{
  // Unfortunately each evaluation will take O(N) time because it requires a
  // scan over all points in the dataset.  Our objective is to compute p_i.
  double denominator = 0;
  double numerator = 0;

  // It's quicker to do this now than one point at a time later.
  stretchedDataset = coordinates * dataset;

  for (size_t k = 0; k < dataset.n_cols; ++k)
  {
    // Don't consider the case where the points are the same.
    if (k == i)
      continue;

    // We want to evaluate exp(-D(A x_i, A x_k)).
    double eval = std::exp(-metric.Evaluate(stretchedDataset.unsafe_col(i),
                                            stretchedDataset.unsafe_col(k)));

    // If they are in the same
    if (labels[i] == labels[k])
      numerator += eval;

    denominator += eval;
  }

  // Now the result is just a simple division, but we have to be sure that the
  // denominator is not 0.
  if (denominator == 0.0)
  {
    Log::Warn << "Denominator of p_" << i << " is 0!" << std::endl;
    return 0;
  }

  return -(numerator / denominator); // Negate because the optimizer is a
                                     // minimizer.
}

//! The non-separable implementation, where Precalculate() is used.
template<typename MetricType>
void SoftmaxErrorFunction<MetricType>::Gradient(const arma::mat& coordinates,
                                                arma::mat& gradient)
{
  // Calculate the denominators and numerators, if necessary.
  Precalculate(coordinates);

  // Now, we handle the summation over i:
  //   sum_i (p_i sum_k (p_ik x_ik x_ik^T) -
  //       sum_{j in class of i} (p_ij x_ij x_ij^T)
  // We can algebraically manipulate the whole thing to produce a more
  // memory-friendly way to calculate this.  Looping over each i and k (again
  // O((n * (n + 1)) / 2) as with the last step, we can add the following to the
  // sum:
  //
  //   if class of i is the same as the class of k, add
  //     (((p_i - (1 / p_i)) p_ik) + ((p_k - (1 / p_k)) p_ki)) x_ik x_ik^T
  //   otherwise, add
  //     (p_i p_ik + p_k p_ki) x_ik x_ik^T
  arma::mat sum;
  sum.zeros(stretchedDataset.n_rows, stretchedDataset.n_rows);
  for (size_t i = 0; i < stretchedDataset.n_cols; i++)
  {
    for (size_t k = (i + 1); k < stretchedDataset.n_cols; k++)
    {
      // Calculate p_ik and p_ki first.
      double eval = exp(-metric.Evaluate(stretchedDataset.unsafe_col(i),
                                         stretchedDataset.unsafe_col(k)));
      double p_ik = 0, p_ki = 0;
      p_ik = eval / denominators(i);
      p_ki = eval / denominators(k);

      // Subtract x_i from x_k.  We are not using stretched points here.
      arma::vec x_ik = dataset.col(i) - dataset.col(k);
      arma::mat secondTerm = (x_ik * trans(x_ik));

      if (labels[i] == labels[k])
        sum += ((p[i] - 1) * p_ik + (p[k] - 1) * p_ki) * secondTerm;
      else
        sum += (p[i] * p_ik + p[k] * p_ki) * secondTerm;
    }
  }

  // Assemble the final gradient.
  gradient = -2 * coordinates * sum;
}

//! The separable implementation.
template<typename MetricType>
void SoftmaxErrorFunction<MetricType>::Gradient(const arma::mat& coordinates,
                                                const size_t i,
                                                arma::mat& gradient)
{
  // We will need to calculate p_i before this evaluation is done, so these two
  // variables will hold the information necessary for that.
  double numerator = 0;
  double denominator = 0;

  // The gradient involves two matrix terms which are eventually combined into
  // one.
  arma::mat firstTerm;
  arma::mat secondTerm;

  firstTerm.zeros(coordinates.n_rows, coordinates.n_cols);
  secondTerm.zeros(coordinates.n_rows, coordinates.n_cols);

  // Compute the stretched dataset.
  stretchedDataset = coordinates * dataset;

  for (size_t k = 0; k < dataset.n_cols; ++k)
  {
    // Don't consider the case where the points are the same.
    if (i == k)
      continue;

    // Calculate the numerator of p_ik.
    double eval = exp(-metric.Evaluate(stretchedDataset.unsafe_col(i),
                                       stretchedDataset.unsafe_col(k)));

    // If the points are in the same class, we must add to the second term of
    // the gradient as well as the numerator of p_i.  We will divide by the
    // denominator of p_ik later.  For x_ik we are not using stretched points.
    arma::vec x_ik = dataset.col(i) - dataset.col(k);
    if (labels[i] == labels[k])
    {
      numerator += eval;
      secondTerm += eval * x_ik * trans(x_ik);
    }

    // We always have to add to the denominator of p_i and the first term of the
    // gradient computation.  We will divide by the denominator of p_ik later.
    denominator += eval;
    firstTerm += eval * x_ik * trans(x_ik);
  }

  // Calculate p_i.
  double p = 0;
  if (denominator == 0)
  {
    Log::Warn << "Denominator of p_" << i << " is 0!" << std::endl;
    // If the denominator is zero, then all p_ik should be zero and there is
    // no gradient contribution from this point.
    gradient.zeros(coordinates.n_rows, coordinates.n_rows);
    return;
  }
  else
  {
    p = numerator / denominator;
    firstTerm /= denominator;
    secondTerm /= denominator;
  }

  // Now multiply the first term by p_i, and add the two together and multiply
  // all by 2 * A.  We negate it though, because our optimizer is a minimizer.
  gradient = -2 * coordinates * (p * firstTerm - secondTerm);
}

template<typename MetricType>
const arma::mat SoftmaxErrorFunction<MetricType>::GetInitialPoint() const
{
  return arma::eye<arma::mat>(dataset.n_rows, dataset.n_rows);
}

template<typename MetricType>
void SoftmaxErrorFunction<MetricType>::Precalculate(
    const arma::mat& coordinates)
{
  // Ensure it is the right size.
  lastCoordinates.set_size(coordinates.n_rows, coordinates.n_cols);

  // Make sure the calculation is necessary.
  if ((accu(coordinates == lastCoordinates) == coordinates.n_elem) &&
      precalculated)
    return; // No need to calculate; we already have this stuff saved.

  // Coordinates are different; save the new ones, and stretch the dataset.
  lastCoordinates = coordinates;
  stretchedDataset = coordinates * dataset;

  // For each point i, we must evaluate the softmax function:
  //   p_ij = exp( -K(x_i, x_j) ) / ( sum_{k != i} ( exp( -K(x_i, x_k) )))
  //   p_i = sum_{j in class of i} p_ij
  // We will do this by keeping track of the denominators for each i as well as
  // the numerators (the sum for all j in class of i).  This will be on the
  // order of O((n * (n + 1)) / 2), which really isn't all that great.
  p.zeros(stretchedDataset.n_cols);
  denominators.zeros(stretchedDataset.n_cols);
  for (size_t i = 0; i < stretchedDataset.n_cols; i++)
  {
    for (size_t j = (i + 1); j < stretchedDataset.n_cols; j++)
    {
      // Evaluate exp(-d(x_i, x_j)).
      double eval = exp(-metric.Evaluate(stretchedDataset.unsafe_col(i),
                                         stretchedDataset.unsafe_col(j)));

      // Add this to the denominators of both p_i and p_j: K(i, j) = K(j, i).
      denominators[i] += eval;
      denominators[j] += eval;

      // If i and j are the same class, add to numerator of both.
      if (labels[i] == labels[j])
      {
        p[i] += eval;
        p[j] += eval;
      }
    }
  }

  // Divide p_i by their denominators.
  p /= denominators;

  // Clean up any bad values.
  for (size_t i = 0; i < stretchedDataset.n_cols; i++)
  {
    if (denominators[i] == 0.0)
    {
      Log::Debug << "Denominator of p_{" << i << ", j} is 0." << std::endl;

      // Set to usable values.
      denominators[i] = std::numeric_limits<double>::infinity();
      p[i] = 0;
    }
  }

  // We've done a precalculation.  Mark it as done.
  precalculated = true;
}

template<typename MetricType>
std::string SoftmaxErrorFunction<MetricType>::ToString() const{
  std::ostringstream convert;
  convert << "Sofmax Error Function [" << this << "]" << std::endl;
  convert << "  Dataset: " << dataset.n_rows << "x" << dataset.n_cols 
      << std::endl;
  convert << "  Labels: " << labels.n_elem << std::endl;
  //convert << "Metric: " << metric << std::endl;
  convert << "  Precalculated: " << precalculated << std::endl;
  return convert.str();
}

}; // namespace nca
}; // namespace mlpack

#endif