/usr/include/octave-3.8.2/octave/bsxfun-defs.cc is in liboctave-dev 3.8.2-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 | /*
Copyright (C) 2009-2013 Jaroslav Hajek
Copyright (C) 2009 VZLU Prague
This file is part of Octave.
Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING. If not, see
<http://www.gnu.org/licenses/>.
*/
#if !defined (octave_bsxfun_defs_h)
#define octave_bsxfun_defs_h 1
#include <algorithm>
#include <iostream>
#include "dim-vector.h"
#include "oct-locbuf.h"
#include "lo-error.h"
#include "mx-inlines.cc"
template <class R, class X, class Y>
Array<R>
do_bsxfun_op (const Array<X>& x, const Array<Y>& y,
void (*op_vv) (size_t, R *, const X *, const Y *),
void (*op_sv) (size_t, R *, X, const Y *),
void (*op_vs) (size_t, R *, const X *, Y))
{
int nd = std::max (x.ndims (), y.ndims ());
dim_vector dvx = x.dims ().redim (nd), dvy = y.dims ().redim (nd);
// Construct the result dimensions.
dim_vector dvr;
dvr.resize (nd);
for (int i = 0; i < nd; i++)
{
octave_idx_type xk = dvx(i), yk = dvy(i);
if (xk == 1)
dvr(i) = yk;
else if (yk == 1 || xk == yk)
dvr(i) = xk;
else
{
(*current_liboctave_error_handler)
("bsxfun: nonconformant dimensions: %s and %s",
x.dims ().str ().c_str (), y.dims ().str ().c_str ());
break;
}
}
Array<R> retval (dvr);
const X *xvec = x.fortran_vec ();
const Y *yvec = y.fortran_vec ();
R *rvec = retval.fortran_vec ();
// Fold the common leading dimensions.
octave_idx_type start, ldr = 1;
for (start = 0; start < nd; start++)
{
if (dvx(start) != dvy(start))
break;
ldr *= dvr(start);
}
if (retval.is_empty ())
; // do nothing
else if (start == nd)
op_vv (retval.numel (), rvec, xvec, yvec);
else
{
// Determine the type of the low-level loop.
bool xsing = false, ysing = false;
if (ldr == 1)
{
xsing = dvx(start) == 1;
ysing = dvy(start) == 1;
if (xsing || ysing)
{
ldr *= dvx(start) * dvy(start);
start++;
}
}
dim_vector cdvx = dvx.cumulative (), cdvy = dvy.cumulative ();
// Nullify singleton dims to achieve a spread effect.
for (int i = std::max (start, octave_idx_type (1)); i < nd; i++)
{
if (dvx(i) == 1)
cdvx(i-1) = 0;
if (dvy(i) == 1)
cdvy(i-1) = 0;
}
octave_idx_type niter = dvr.numel (start);
// The index array.
OCTAVE_LOCAL_BUFFER_INIT (octave_idx_type, idx, nd, 0);
for (octave_idx_type iter = 0; iter < niter; iter++)
{
octave_quit ();
// Compute indices.
// FIXME: performance impact noticeable?
octave_idx_type xidx = cdvx.cum_compute_index (idx);
octave_idx_type yidx = cdvy.cum_compute_index (idx);
octave_idx_type ridx = dvr.compute_index (idx);
// Apply the low-level loop.
if (xsing)
op_sv (ldr, rvec + ridx, xvec[xidx], yvec + yidx);
else if (ysing)
op_vs (ldr, rvec + ridx, xvec + xidx, yvec[yidx]);
else
op_vv (ldr, rvec + ridx, xvec + xidx, yvec + yidx);
dvr.increment_index (idx + start, start);
}
}
return retval;
}
template <class R, class X>
void
do_inplace_bsxfun_op (Array<R>& r, const Array<X>& x,
void (*op_vv) (size_t, R *, const X *),
void (*op_vs) (size_t, R *, X))
{
dim_vector dvr = r.dims (), dvx = x.dims ();
octave_idx_type nd = r.ndims ();
dvx.redim (nd);
const X* xvec = x.fortran_vec ();
R* rvec = r.fortran_vec ();
// Fold the common leading dimensions.
octave_idx_type start, ldr = 1;
for (start = 0; start < nd; start++)
{
if (dvr(start) != dvx(start))
break;
ldr *= dvr(start);
}
if (r.is_empty ())
; // do nothing
else if (start == nd)
op_vv (r.numel (), rvec, xvec);
else
{
// Determine the type of the low-level loop.
bool xsing = false;
if (ldr == 1)
{
xsing = dvx(start) == 1;
if (xsing)
{
ldr *= dvr(start) * dvx(start);
start++;
}
}
dim_vector cdvx = dvx.cumulative ();
// Nullify singleton dims to achieve a spread effect.
for (int i = std::max (start, octave_idx_type (1)); i < nd; i++)
{
if (dvx(i) == 1)
cdvx(i-1) = 0;
}
octave_idx_type niter = dvr.numel (start);
// The index array.
OCTAVE_LOCAL_BUFFER_INIT (octave_idx_type, idx, nd, 0);
for (octave_idx_type iter = 0; iter < niter; iter++)
{
octave_quit ();
// Compute indices.
// FIXME: performance impact noticeable?
octave_idx_type xidx = cdvx.cum_compute_index (idx);
octave_idx_type ridx = dvr.compute_index (idx);
// Apply the low-level loop.
if (xsing)
op_vs (ldr, rvec + ridx, xvec[xidx]);
else
op_vv (ldr, rvec + ridx, xvec + xidx);
dvr.increment_index (idx + start, start);
}
}
}
#define BSXFUN_OP_DEF(OP, ARRAY) \
ARRAY bsxfun_ ## OP (const ARRAY& x, const ARRAY& y)
#define BSXFUN_OP2_DEF(OP, ARRAY, ARRAY1, ARRAY2) \
ARRAY bsxfun_ ## OP (const ARRAY1& x, const ARRAY2& y)
#define BSXFUN_REL_DEF(OP, ARRAY) \
boolNDArray bsxfun_ ## OP (const ARRAY& x, const ARRAY& y)
#define BSXFUN_OP_DEF_MXLOOP(OP, ARRAY, LOOP) \
BSXFUN_OP_DEF(OP, ARRAY) \
{ return do_bsxfun_op<ARRAY::element_type, ARRAY::element_type, ARRAY::element_type> \
(x, y, LOOP, LOOP, LOOP); }
#define BSXFUN_OP2_DEF_MXLOOP(OP, ARRAY, ARRAY1, ARRAY2, LOOP) \
BSXFUN_OP2_DEF(OP, ARRAY, ARRAY1, ARRAY2) \
{ return do_bsxfun_op<ARRAY::element_type, ARRAY1::element_type, ARRAY2::element_type> \
(x, y, LOOP, LOOP, LOOP); }
#define BSXFUN_REL_DEF_MXLOOP(OP, ARRAY, LOOP) \
BSXFUN_REL_DEF(OP, ARRAY) \
{ return do_bsxfun_op<bool, ARRAY::element_type, ARRAY::element_type> \
(x, y, LOOP, LOOP, LOOP); }
#define BSXFUN_STDOP_DEFS_MXLOOP(ARRAY) \
BSXFUN_OP_DEF_MXLOOP (add, ARRAY, mx_inline_add) \
BSXFUN_OP_DEF_MXLOOP (sub, ARRAY, mx_inline_sub) \
BSXFUN_OP_DEF_MXLOOP (mul, ARRAY, mx_inline_mul) \
BSXFUN_OP_DEF_MXLOOP (div, ARRAY, mx_inline_div) \
BSXFUN_OP_DEF_MXLOOP (min, ARRAY, mx_inline_xmin) \
BSXFUN_OP_DEF_MXLOOP (max, ARRAY, mx_inline_xmax) \
#define BSXFUN_STDREL_DEFS_MXLOOP(ARRAY) \
BSXFUN_REL_DEF_MXLOOP (eq, ARRAY, mx_inline_eq) \
BSXFUN_REL_DEF_MXLOOP (ne, ARRAY, mx_inline_ne) \
BSXFUN_REL_DEF_MXLOOP (lt, ARRAY, mx_inline_lt) \
BSXFUN_REL_DEF_MXLOOP (le, ARRAY, mx_inline_le) \
BSXFUN_REL_DEF_MXLOOP (gt, ARRAY, mx_inline_gt) \
BSXFUN_REL_DEF_MXLOOP (ge, ARRAY, mx_inline_ge)
//For bsxfun power with mixed integer/float types
#define BSXFUN_POW_MIXED_MXLOOP(INT_TYPE) \
BSXFUN_OP2_DEF_MXLOOP (pow, INT_TYPE, INT_TYPE, NDArray, mx_inline_pow) \
BSXFUN_OP2_DEF_MXLOOP (pow, INT_TYPE, INT_TYPE, FloatNDArray, mx_inline_pow)\
BSXFUN_OP2_DEF_MXLOOP (pow, INT_TYPE, NDArray, INT_TYPE, mx_inline_pow) \
BSXFUN_OP2_DEF_MXLOOP (pow, INT_TYPE, FloatNDArray, INT_TYPE, mx_inline_pow)
#endif
|