This file is indexed.

/usr/include/octave-3.8.2/octave/ov-intx.h is in liboctave-dev 3.8.2-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
/*

Copyright (C) 2004-2013 John W. Eaton
Copyright (C) 2010 VZLU Prague

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#include <cstdlib>

#include <iosfwd>
#include <string>

#include "mx-base.h"
#include "oct-alloc.h"
#include "str-vec.h"

#include "error.h"
#include "mxarray.h"
#include "oct-stream.h"
#include "ov-base.h"
#include "ov-base-int.h"
#include "ov-typeinfo.h"
#include "gripes.h"

#include "ov-re-mat.h"
#include "ov-scalar.h"

class
OCTINTERP_API
OCTAVE_VALUE_INT_MATRIX_T
  : public octave_base_int_matrix<intNDArray<OCTAVE_INT_T> >
{
public:

  OCTAVE_VALUE_INT_MATRIX_T (void)
    : octave_base_int_matrix<intNDArray<OCTAVE_INT_T> > () { }

  OCTAVE_VALUE_INT_MATRIX_T (const intNDArray<OCTAVE_INT_T>& nda)
    : octave_base_int_matrix<intNDArray<OCTAVE_INT_T> > (nda) { }

  OCTAVE_VALUE_INT_MATRIX_T (const Array<OCTAVE_INT_T>& nda)
    : octave_base_int_matrix<intNDArray<OCTAVE_INT_T> >
        (intNDArray<OCTAVE_INT_T> (nda)) { }

  ~OCTAVE_VALUE_INT_MATRIX_T (void) { }

  octave_base_value *clone (void) const
  { return new OCTAVE_VALUE_INT_MATRIX_T (*this); }

  octave_base_value *empty_clone (void) const
  { return new OCTAVE_VALUE_INT_MATRIX_T (); }

  bool OCTAVE_TYPE_PREDICATE_FUNCTION (void) const { return true; }

  bool is_integer_type (void) const { return true; }

  builtin_type_t builtin_type (void) const { return OCTAVE_INT_BTYP; }

public:

  int8NDArray
  int8_array_value (void) const { return int8NDArray (matrix); }

  int16NDArray
  int16_array_value (void) const { return int16NDArray (matrix); }

  int32NDArray
  int32_array_value (void) const { return int32NDArray (matrix); }

  int64NDArray
  int64_array_value (void) const { return int64NDArray (matrix); }

  uint8NDArray
  uint8_array_value (void) const { return uint8NDArray (matrix); }

  uint16NDArray
  uint16_array_value (void) const { return uint16NDArray (matrix); }

  uint32NDArray
  uint32_array_value (void) const { return uint32NDArray (matrix); }

  uint64NDArray
  uint64_array_value (void) const { return uint64NDArray (matrix); }

  double
  double_value (bool = false) const
  {
    double retval = lo_ieee_nan_value ();

    if (numel () > 0)
      {
        gripe_implicit_conversion ("Octave:array-to-scalar",
                                   type_name (), "real scalar");

        retval = matrix(0).double_value ();
      }
    else
      gripe_invalid_conversion (type_name (), "real scalar");

    return retval;

  }

  float
  float_value (bool = false) const
  {
    float retval = lo_ieee_float_nan_value ();

    if (numel () > 0)
      {
        gripe_implicit_conversion ("Octave:array-to-scalar",
                                   type_name (), "real scalar");

        retval = matrix(0).float_value ();
      }
    else
      gripe_invalid_conversion (type_name (), "real scalar");

    return retval;

  }

  double scalar_value (bool = false) const { return double_value (); }

  float float_scalar_value (bool = false) const { return float_value (); }

  Matrix
  matrix_value (bool = false) const
  {
    Matrix retval;
    dim_vector dv = dims ();
    if (dv.length () > 2)
      error ("invalid conversion of %s to Matrix", type_name ().c_str ());
    else
      {
        retval = Matrix (dv(0), dv(1));
        double *vec = retval.fortran_vec ();
        octave_idx_type nel = matrix.numel ();
        for (octave_idx_type i = 0; i < nel; i++)
          vec[i] = matrix(i).double_value ();
      }
    return retval;
  }

  FloatMatrix
  float_matrix_value (bool = false) const
  {
    FloatMatrix retval;
    dim_vector dv = dims ();
    if (dv.length () > 2)
      error ("invalid conversion of %s to FloatMatrix", type_name ().c_str ());
    else
      {
        retval = FloatMatrix (dv(0), dv(1));
        float *vec = retval.fortran_vec ();
        octave_idx_type nel = matrix.numel ();
        for (octave_idx_type i = 0; i < nel; i++)
          vec[i] = matrix(i).float_value ();
      }
    return retval;
  }

  ComplexMatrix
  complex_matrix_value (bool = false) const
  {
    ComplexMatrix retval;
    dim_vector dv = dims ();
    if (dv.length () > 2)
      error ("invalid conversion of %s to Matrix", type_name ().c_str ());
    else
      {
        retval = ComplexMatrix (dv(0), dv(1));
        Complex *vec = retval.fortran_vec ();
        octave_idx_type nel = matrix.numel ();
        for (octave_idx_type i = 0; i < nel; i++)
          vec[i] = Complex (matrix(i).double_value ());
      }
    return retval;
  }

  FloatComplexMatrix
  float_complex_matrix_value (bool = false) const
  {
    FloatComplexMatrix retval;
    dim_vector dv = dims ();
    if (dv.length () > 2)
      error ("invalid conversion of %s to FloatMatrix", type_name ().c_str ());
    else
      {
        retval = FloatComplexMatrix (dv(0), dv(1));
        FloatComplex *vec = retval.fortran_vec ();
        octave_idx_type nel = matrix.numel ();
        for (octave_idx_type i = 0; i < nel; i++)
          vec[i] = FloatComplex (matrix(i).float_value ());
      }
    return retval;
  }

  NDArray
  array_value (bool = false) const
  {
    NDArray retval (matrix.dims ());
    double *vec = retval.fortran_vec ();
    octave_idx_type nel = matrix.numel ();
    for (octave_idx_type i = 0; i < nel; i++)
      vec[i] = matrix(i).double_value ();
    return retval;
  }

  FloatNDArray
  float_array_value (bool = false) const
  {
    FloatNDArray retval (matrix.dims ());
    float *vec = retval.fortran_vec ();
    octave_idx_type nel = matrix.numel ();
    for (octave_idx_type i = 0; i < nel; i++)
      vec[i] = matrix(i).float_value ();
    return retval;
  }

  ComplexNDArray
  complex_array_value (bool = false) const
  {
    ComplexNDArray retval (matrix.dims ());
    Complex *vec = retval.fortran_vec ();
    octave_idx_type nel = matrix.numel ();
    for (octave_idx_type i = 0; i < nel; i++)
      vec[i] = Complex (matrix(i).double_value ());
    return retval;
  }

  FloatComplexNDArray
  float_complex_array_value (bool = false) const
  {
    FloatComplexNDArray retval (matrix.dims ());
    FloatComplex *vec = retval.fortran_vec ();
    octave_idx_type nel = matrix.numel ();
    for (octave_idx_type i = 0; i < nel; i++)
      vec[i] = FloatComplex (matrix(i).float_value ());
    return retval;
  }

  boolNDArray
  bool_array_value (bool warn = false) const
  {
    boolNDArray retval (dims ());

    octave_idx_type nel = numel ();

    if (warn && matrix.any_element_not_one_or_zero ())
      gripe_logical_conversion ();

    bool *vec = retval.fortran_vec ();
    for (octave_idx_type i = 0; i < nel; i++)
      vec[i] = matrix(i).bool_value ();

    return retval;
  }

  charNDArray
  char_array_value (bool = false) const
  {
    charNDArray retval (dims ());

    octave_idx_type nel = numel ();

    char *vec = retval.fortran_vec ();
    for (octave_idx_type i = 0; i < nel; i++)
      vec[i] = matrix(i).char_value ();

    return retval;
  }

  // Use matrix_ref here to clear index cache.
  void increment (void)
  {
    matrix_ref () += OCTAVE_INT_T (1);
  }

  void decrement (void)
  {
    matrix_ref () -= OCTAVE_INT_T (1);
  }

  void changesign (void)
  {
    matrix_ref ().changesign ();
  }

  idx_vector index_vector (void) const
  { return idx_cache ? *idx_cache : set_idx_cache (idx_vector (matrix)); }

  int write (octave_stream& os, int block_size,
             oct_data_conv::data_type output_type, int skip,
             oct_mach_info::float_format flt_fmt) const
  { return os.write (matrix, block_size, output_type, skip, flt_fmt); }

  // Unsafe.  This function exists to support the MEX interface.
  // You should not use it anywhere else.
  void *mex_get_data (void) const { return matrix.mex_get_data (); }

  mxArray *as_mxArray (void) const
  {
    mxArray *retval = new mxArray (OCTAVE_INT_MX_CLASS, dims (), mxREAL);

    OCTAVE_INT_T::val_type *pr = static_cast<OCTAVE_INT_T::val_type *>
                                 (retval->get_data ());

    mwSize nel = numel ();

    const OCTAVE_INT_T *p = matrix.data ();

    for (mwIndex i = 0; i < nel; i++)
      pr[i] = p[i].value ();

    return retval;
  }

  octave_value map (unary_mapper_t umap) const
  {
    switch (umap)
      {
      case umap_abs:
        return matrix.abs ();
      case umap_signum:
        return matrix.signum ();
      case umap_ceil:
      case umap_conj:
      case umap_fix:
      case umap_floor:
      case umap_real:
      case umap_round:
        return matrix;
      case umap_imag:
        return intNDArray<OCTAVE_INT_T> (matrix.dims (), OCTAVE_INT_T ());
      case umap_isnan:
      case umap_isna:
      case umap_isinf:
        return boolNDArray (matrix.dims (), false);
      case umap_finite:
        return boolNDArray (matrix.dims (), true);

      default:
        {
          octave_matrix m (array_value ());
          return m.map (umap);
        }
      }
  }

private:

  DECLARE_OCTAVE_ALLOCATOR

  DECLARE_OV_TYPEID_FUNCTIONS_AND_DATA
};

class
OCTINTERP_API
OCTAVE_VALUE_INT_SCALAR_T
  : public octave_base_int_scalar<OCTAVE_INT_T>
{
public:

  OCTAVE_VALUE_INT_SCALAR_T (void)
    : octave_base_int_scalar<OCTAVE_INT_T> () { }

  OCTAVE_VALUE_INT_SCALAR_T (const OCTAVE_INT_T& nda)
    : octave_base_int_scalar<OCTAVE_INT_T> (nda) { }

  ~OCTAVE_VALUE_INT_SCALAR_T (void) { }

  octave_base_value *clone (void) const
  { return new OCTAVE_VALUE_INT_SCALAR_T (*this); }

  octave_base_value *empty_clone (void) const
  { return new OCTAVE_VALUE_INT_MATRIX_T (); }

  octave_value do_index_op (const octave_value_list& idx,
                            bool resize_ok = false)
  {
    // FIXME: this doesn't solve the problem of
    //
    //   a = 1; a([1,1], [1,1], [1,1])
    //
    // and similar constructions.  Hmm...

    // FIXME: using this constructor avoids narrowing the
    // 1x1 matrix back to a scalar value.  Need a better solution
    // to this problem.

    octave_value tmp
    (new OCTAVE_VALUE_INT_MATRIX_T
     (OCTAVE_VALUE_INT_NDARRAY_EXTRACTOR_FUNCTION ()));

    return tmp.do_index_op (idx, resize_ok);
  }

  bool OCTAVE_TYPE_PREDICATE_FUNCTION (void) const { return true; }

  bool is_integer_type (void) const { return true; }

  builtin_type_t builtin_type (void) const { return OCTAVE_INT_BTYP; }

public:

  octave_int8
  int8_scalar_value (void) const { return octave_int8 (scalar); }

  octave_int16
  int16_scalar_value (void) const { return octave_int16 (scalar); }

  octave_int32
  int32_scalar_value (void) const { return octave_int32 (scalar); }

  octave_int64
  int64_scalar_value (void) const { return octave_int64 (scalar); }

  octave_uint8
  uint8_scalar_value (void) const { return octave_uint8 (scalar); }

  octave_uint16
  uint16_scalar_value (void) const { return octave_uint16 (scalar); }

  octave_uint32
  uint32_scalar_value (void) const { return octave_uint32 (scalar); }

  octave_uint64
  uint64_scalar_value (void) const { return octave_uint64 (scalar); }

  int8NDArray
  int8_array_value (void) const
  { return int8NDArray (dim_vector (1, 1), int8_scalar_value ()); }

  int16NDArray
  int16_array_value (void) const
  { return int16NDArray (dim_vector (1, 1), int16_scalar_value ()); }

  int32NDArray
  int32_array_value (void) const
  { return int32NDArray (dim_vector (1, 1), int32_scalar_value ()); }

  int64NDArray
  int64_array_value (void) const
  { return int64NDArray (dim_vector (1, 1), int64_scalar_value ()); }

  uint8NDArray
  uint8_array_value (void) const
  { return uint8NDArray (dim_vector (1, 1), uint8_scalar_value ()); }

  uint16NDArray
  uint16_array_value (void) const
  { return uint16NDArray (dim_vector (1, 1), uint16_scalar_value ()); }

  uint32NDArray
  uint32_array_value (void) const
  { return uint32NDArray (dim_vector (1, 1), uint32_scalar_value ()); }

  uint64NDArray
  uint64_array_value (void) const
  { return uint64NDArray (dim_vector (1, 1), uint64_scalar_value ()); }

  octave_value resize (const dim_vector& dv, bool fill = false) const
  {
    if (fill)
      {
        intNDArray<OCTAVE_INT_T> retval (dv, 0);
        if (dv.numel ())
          retval(0) = scalar;
        return retval;
      }
    else
      {
        intNDArray<OCTAVE_INT_T> retval (dv);
        if (dv.numel ())
          retval(0) = scalar;
        return retval;
      }
  }

  double double_value (bool = false) const { return scalar.double_value (); }

  float float_value (bool = false) const { return scalar.float_value (); }

  double scalar_value (bool = false) const { return scalar.double_value (); }

  float float_scalar_value (bool = false) const
  { return scalar.float_value (); }

  Matrix
  matrix_value (bool = false) const
  {
    Matrix retval (1, 1);
    retval(0,0) = scalar.double_value ();
    return retval;
  }

  FloatMatrix
  float_matrix_value (bool = false) const
  {
    FloatMatrix retval (1, 1);
    retval(0,0) = scalar.float_value ();
    return retval;
  }

  ComplexMatrix
  complex_matrix_value (bool = false) const
  {
    ComplexMatrix retval (1, 1);
    retval(0,0) = Complex (scalar.double_value ());
    return retval;
  }

  FloatComplexMatrix
  float_complex_matrix_value (bool = false) const
  {
    FloatComplexMatrix retval (1, 1);
    retval(0,0) = FloatComplex (scalar.float_value ());
    return retval;
  }

  NDArray
  array_value (bool = false) const
  {
    NDArray retval (dim_vector (1, 1));
    retval(0) = scalar.double_value ();
    return retval;
  }

  FloatNDArray
  float_array_value (bool = false) const
  {
    FloatNDArray retval (dim_vector (1, 1));
    retval(0) = scalar.float_value ();
    return retval;
  }

  ComplexNDArray
  complex_array_value (bool = false) const
  {
    ComplexNDArray retval (dim_vector (1, 1));
    retval(0) = FloatComplex (scalar.double_value ());
    return retval;
  }

  FloatComplexNDArray
  float_complex_array_value (bool = false) const
  {
    FloatComplexNDArray retval (dim_vector (1, 1));
    retval(0) = FloatComplex (scalar.float_value ());
    return retval;
  }

  bool bool_value (bool warn = false) const
  {
    if (warn && scalar != 0.0 && scalar != 1.0)
      gripe_logical_conversion ();

    return scalar.bool_value ();
  }

  boolNDArray
  bool_array_value (bool warn = false) const
  {
    boolNDArray retval (dim_vector (1, 1));

    if (warn && scalar != 0.0 && scalar != 1.0)
      gripe_logical_conversion ();

    retval(0) = scalar.bool_value ();

    return retval;
  }

  charNDArray
  char_array_value (bool = false) const
  {
    charNDArray retval (dim_vector (1, 1));
    retval(0) = scalar.char_value ();
    return retval;
  }

  void increment (void)
  {
    scalar += OCTAVE_INT_T (1);
  }

  void decrement (void)
  {
    scalar -= OCTAVE_INT_T (1);
  }

  idx_vector index_vector (void) const { return idx_vector (scalar); }

  int write (octave_stream& os, int block_size,
             oct_data_conv::data_type output_type, octave_idx_type skip,
             oct_mach_info::float_format flt_fmt) const
  {
    return os.write (OCTAVE_VALUE_INT_NDARRAY_EXTRACTOR_FUNCTION (),
                     block_size, output_type, skip, flt_fmt);
  }

  // Unsafe.  This function exists to support the MEX interface.
  // You should not use it anywhere else.
  void *mex_get_data (void) const { return scalar.mex_get_data (); }

  mxArray *as_mxArray (void) const
  {
    mxArray *retval = new mxArray (OCTAVE_INT_MX_CLASS, 1, 1, mxREAL);

    OCTAVE_INT_T::val_type *pr = static_cast<OCTAVE_INT_T::val_type *>
                                 (retval->get_data ());

    pr[0] = scalar.value ();

    return retval;
  }

  octave_value map (unary_mapper_t umap) const
  {
    switch (umap)
      {
      case umap_abs:
        return scalar.abs ();
      case umap_signum:
        return scalar.signum ();
      case umap_ceil:
      case umap_conj:
      case umap_fix:
      case umap_floor:
      case umap_real:
      case umap_round:
        return scalar;
      case umap_imag:
        return OCTAVE_INT_T ();
      case umap_isnan:
      case umap_isna:
      case umap_isinf:
        return false;
      case umap_finite:
        return true;

      default:
        {
          octave_scalar m (scalar_value ());
          return m.map (umap);
        }
      }
  }

private:

  DECLARE_OCTAVE_ALLOCATOR

  DECLARE_OV_TYPEID_FUNCTIONS_AND_DATA
};