This file is indexed.

/usr/include/ode/objects.h is in libode-dev 2:0.11.1-4.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
/*************************************************************************
 *                                                                       *
 * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith.       *
 * All rights reserved.  Email: russ@q12.org   Web: www.q12.org          *
 *                                                                       *
 * This library is free software; you can redistribute it and/or         *
 * modify it under the terms of EITHER:                                  *
 *   (1) The GNU Lesser General Public License as published by the Free  *
 *       Software Foundation; either version 2.1 of the License, or (at  *
 *       your option) any later version. The text of the GNU Lesser      *
 *       General Public License is included with this library in the     *
 *       file LICENSE.TXT.                                               *
 *   (2) The BSD-style license that is included with this library in     *
 *       the file LICENSE-BSD.TXT.                                       *
 *                                                                       *
 * This library is distributed in the hope that it will be useful,       *
 * but WITHOUT ANY WARRANTY; without even the implied warranty of        *
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files    *
 * LICENSE.TXT and LICENSE-BSD.TXT for more details.                     *
 *                                                                       *
 *************************************************************************/

#ifndef _ODE_OBJECTS_H_
#define _ODE_OBJECTS_H_

#include <ode/common.h>
#include <ode/mass.h>
#include <ode/contact.h>

#ifdef __cplusplus
extern "C" {
#endif

/**
 * @defgroup world World
 *
 * The world object is a container for rigid bodies and joints. Objects in
 * different worlds can not interact, for example rigid bodies from two
 * different worlds can not collide.
 *
 * All the objects in a world exist at the same point in time, thus one
 * reason to use separate worlds is to simulate systems at different rates.
 * Most applications will only need one world.
 */


/**
 * @brief Create a new, empty world and return its ID number.
 * @return an identifier
 * @ingroup world
 */
ODE_API dWorldID dWorldCreate(void);


/**
 * @brief Destroy a world and everything in it.
 *
 * This includes all bodies, and all joints that are not part of a joint
 * group. Joints that are part of a joint group will be deactivated, and
 * can be destroyed by calling, for example, dJointGroupEmpty().
 * @ingroup world
 * @param world the identifier for the world the be destroyed.
 */
ODE_API void dWorldDestroy (dWorldID world);


/**
 * @brief Set the world's global gravity vector.
 *
 * The units are m/s^2, so Earth's gravity vector would be (0,0,-9.81),
 * assuming that +z is up. The default is no gravity, i.e. (0,0,0).
 *
 * @ingroup world
 */
ODE_API void dWorldSetGravity (dWorldID, dReal x, dReal y, dReal z);


/**
 * @brief Get the gravity vector for a given world.
 * @ingroup world
 */
ODE_API void dWorldGetGravity (dWorldID, dVector3 gravity);


/**
 * @brief Set the global ERP value, that controls how much error
 * correction is performed in each time step.
 * @ingroup world
 * @param dWorldID the identifier of the world.
 * @param erp Typical values are in the range 0.1--0.8. The default is 0.2.
 */
ODE_API void dWorldSetERP (dWorldID, dReal erp);

/**
 * @brief Get the error reduction parameter.
 * @ingroup world
 * @return ERP value
 */
ODE_API dReal dWorldGetERP (dWorldID);


/**
 * @brief Set the global CFM (constraint force mixing) value.
 * @ingroup world
 * @param cfm Typical values are in the range @m{10^{-9}} -- 1.
 * The default is 10^-5 if single precision is being used, or 10^-10
 * if double precision is being used.
 */
ODE_API void dWorldSetCFM (dWorldID, dReal cfm);

/**
 * @brief Get the constraint force mixing value.
 * @ingroup world
 * @return CFM value
 */
ODE_API dReal dWorldGetCFM (dWorldID);


/**
 * @brief Step the world.
 *
 * This uses a "big matrix" method that takes time on the order of m^3
 * and memory on the order of m^2, where m is the total number of constraint
 * rows. For large systems this will use a lot of memory and can be very slow,
 * but this is currently the most accurate method.
 * @ingroup world
 * @param stepsize The number of seconds that the simulation has to advance.
 */
ODE_API void dWorldStep (dWorldID, dReal stepsize);


/**
 * @brief Converts an impulse to a force.
 * @ingroup world
 * @remarks
 * If you want to apply a linear or angular impulse to a rigid body,
 * instead of a force or a torque, then you can use this function to convert
 * the desired impulse into a force/torque vector before calling the
 * BodyAdd... function.
 * The current algorithm simply scales the impulse by 1/stepsize,
 * where stepsize is the step size for the next step that will be taken.
 * This function is given a dWorldID because, in the future, the force
 * computation may depend on integrator parameters that are set as
 * properties of the world.
 */
ODE_API void dWorldImpulseToForce
(
  dWorldID, dReal stepsize,
  dReal ix, dReal iy, dReal iz, dVector3 force
);


/**
 * @brief Step the world.
 * @ingroup world
 * @remarks
 * This uses an iterative method that takes time on the order of m*N
 * and memory on the order of m, where m is the total number of constraint
 * rows N is the number of iterations.
 * For large systems this is a lot faster than dWorldStep(),
 * but it is less accurate.
 * @remarks
 * QuickStep is great for stacks of objects especially when the
 * auto-disable feature is used as well.
 * However, it has poor accuracy for near-singular systems.
 * Near-singular systems can occur when using high-friction contacts, motors,
 * or certain articulated structures. For example, a robot with multiple legs
 * sitting on the ground may be near-singular.
 * @remarks
 * There are ways to help overcome QuickStep's inaccuracy problems:
 * \li Increase CFM.
 * \li Reduce the number of contacts in your system (e.g. use the minimum
 *     number of contacts for the feet of a robot or creature).
 * \li Don't use excessive friction in the contacts.
 * \li Use contact slip if appropriate
 * \li Avoid kinematic loops (however, kinematic loops are inevitable in
 *     legged creatures).
 * \li Don't use excessive motor strength.
 * \liUse force-based motors instead of velocity-based motors.
 *
 * Increasing the number of QuickStep iterations may help a little bit, but
 * it is not going to help much if your system is really near singular.
 */
ODE_API void dWorldQuickStep (dWorldID w, dReal stepsize);


/**
 * @brief Set the number of iterations that the QuickStep method performs per
 *        step.
 * @ingroup world
 * @remarks
 * More iterations will give a more accurate solution, but will take
 * longer to compute.
 * @param num The default is 20 iterations.
 */
ODE_API void dWorldSetQuickStepNumIterations (dWorldID, int num);


/**
 * @brief Get the number of iterations that the QuickStep method performs per
 *        step.
 * @ingroup world
 * @return nr of iterations
 */
ODE_API int dWorldGetQuickStepNumIterations (dWorldID);

/**
 * @brief Set the SOR over-relaxation parameter
 * @ingroup world
 * @param over_relaxation value to use by SOR
 */
ODE_API void dWorldSetQuickStepW (dWorldID, dReal over_relaxation);

/**
 * @brief Get the SOR over-relaxation parameter
 * @ingroup world
 * @returns the over-relaxation setting
 */
ODE_API dReal dWorldGetQuickStepW (dWorldID);

/* World contact parameter functions */

/**
 * @brief Set the maximum correcting velocity that contacts are allowed
 * to generate.
 * @ingroup world
 * @param vel The default value is infinity (i.e. no limit).
 * @remarks
 * Reducing this value can help prevent "popping" of deeply embedded objects.
 */
ODE_API void dWorldSetContactMaxCorrectingVel (dWorldID, dReal vel);

/**
 * @brief Get the maximum correcting velocity that contacts are allowed
 * to generated.
 * @ingroup world
 */
ODE_API dReal dWorldGetContactMaxCorrectingVel (dWorldID);

/**
 * @brief Set the depth of the surface layer around all geometry objects.
 * @ingroup world
 * @remarks
 * Contacts are allowed to sink into the surface layer up to the given
 * depth before coming to rest.
 * @param depth The default value is zero.
 * @remarks
 * Increasing this to some small value (e.g. 0.001) can help prevent
 * jittering problems due to contacts being repeatedly made and broken.
 */
ODE_API void dWorldSetContactSurfaceLayer (dWorldID, dReal depth);

/**
 * @brief Get the depth of the surface layer around all geometry objects.
 * @ingroup world
 * @returns the depth
 */
ODE_API dReal dWorldGetContactSurfaceLayer (dWorldID);

/* StepFast1 functions */

/**
 * @brief Step the world using the StepFast1 algorithm.
 * @param stepsize the nr of seconds to advance the simulation.
 * @param maxiterations The number of iterations to perform.
 * @ingroup world
 */
ODE_API void dWorldStepFast1(dWorldID, dReal stepsize, int maxiterations);


/**
 * @defgroup disable Automatic Enabling and Disabling
 * @ingroup world bodies
 *
 * Every body can be enabled or disabled. Enabled bodies participate in the
 * simulation, while disabled bodies are turned off and do not get updated
 * during a simulation step. New bodies are always created in the enabled state.
 *
 * A disabled body that is connected through a joint to an enabled body will be
 * automatically re-enabled at the next simulation step.
 *
 * Disabled bodies do not consume CPU time, therefore to speed up the simulation
 * bodies should be disabled when they come to rest. This can be done automatically
 * with the auto-disable feature.
 *
 * If a body has its auto-disable flag turned on, it will automatically disable
 * itself when
 *   @li It has been idle for a given number of simulation steps.
 *   @li It has also been idle for a given amount of simulation time.
 *
 * A body is considered to be idle when the magnitudes of both its
 * linear average velocity and angular average velocity are below given thresholds.
 * The sample size for the average defaults to one and can be disabled by setting
 * to zero with 
 *
 * Thus, every body has six auto-disable parameters: an enabled flag, a idle step
 * count, an idle time, linear/angular average velocity thresholds, and the
 * average samples count.
 *
 * Newly created bodies get these parameters from world.
 */

/**
 * @brief Set the AutoEnableDepth parameter used by the StepFast1 algorithm.
 * @ingroup disable
 */
ODE_API void dWorldSetAutoEnableDepthSF1(dWorldID, int autoEnableDepth);

/**
 * @brief Get the AutoEnableDepth parameter used by the StepFast1 algorithm.
 * @ingroup disable
 */
ODE_API int dWorldGetAutoEnableDepthSF1(dWorldID);

/**
 * @brief Get auto disable linear threshold for newly created bodies.
 * @ingroup disable
 * @return the threshold
 */
ODE_API dReal dWorldGetAutoDisableLinearThreshold (dWorldID);

/**
 * @brief Set auto disable linear threshold for newly created bodies.
 * @param linear_threshold default is 0.01
 * @ingroup disable
 */
ODE_API void  dWorldSetAutoDisableLinearThreshold (dWorldID, dReal linear_threshold);

/**
 * @brief Get auto disable angular threshold for newly created bodies.
 * @ingroup disable
 * @return the threshold
 */
ODE_API dReal dWorldGetAutoDisableAngularThreshold (dWorldID);

/**
 * @brief Set auto disable angular threshold for newly created bodies.
 * @param linear_threshold default is 0.01
 * @ingroup disable
 */
ODE_API void dWorldSetAutoDisableAngularThreshold (dWorldID, dReal angular_threshold);

/**
 * @brief Get auto disable linear average threshold for newly created bodies.
 * @ingroup disable
 * @return the threshold
 */
ODE_API dReal dWorldGetAutoDisableLinearAverageThreshold (dWorldID);

/**
 * @brief Set auto disable linear average threshold for newly created bodies.
 * @param linear_average_threshold default is 0.01
 * @ingroup disable
 */
ODE_API void  dWorldSetAutoDisableLinearAverageThreshold (dWorldID, dReal linear_average_threshold);

/**
 * @brief Get auto disable angular average threshold for newly created bodies.
 * @ingroup disable
 * @return the threshold
 */
ODE_API dReal dWorldGetAutoDisableAngularAverageThreshold (dWorldID);

/**
 * @brief Set auto disable angular average threshold for newly created bodies.
 * @param linear_average_threshold default is 0.01
 * @ingroup disable
 */
ODE_API void dWorldSetAutoDisableAngularAverageThreshold (dWorldID, dReal angular_average_threshold);

/**
 * @brief Get auto disable sample count for newly created bodies.
 * @ingroup disable
 * @return number of samples used
 */
ODE_API int dWorldGetAutoDisableAverageSamplesCount (dWorldID);

/**
 * @brief Set auto disable average sample count for newly created bodies.
 * @ingroup disable
 * @param average_samples_count Default is 1, meaning only instantaneous velocity is used.
 * Set to zero to disable sampling and thus prevent any body from auto-disabling.
 */
ODE_API void dWorldSetAutoDisableAverageSamplesCount (dWorldID, unsigned int average_samples_count );

/**
 * @brief Get auto disable steps for newly created bodies.
 * @ingroup disable
 * @return nr of steps
 */
ODE_API int dWorldGetAutoDisableSteps (dWorldID);

/**
 * @brief Set auto disable steps for newly created bodies.
 * @ingroup disable
 * @param steps default is 10
 */
ODE_API void dWorldSetAutoDisableSteps (dWorldID, int steps);

/**
 * @brief Get auto disable time for newly created bodies.
 * @ingroup disable
 * @return nr of seconds
 */
ODE_API dReal dWorldGetAutoDisableTime (dWorldID);

/**
 * @brief Set auto disable time for newly created bodies.
 * @ingroup disable
 * @param time default is 0 seconds
 */
ODE_API void dWorldSetAutoDisableTime (dWorldID, dReal time);

/**
 * @brief Get auto disable flag for newly created bodies.
 * @ingroup disable
 * @return 0 or 1
 */
ODE_API int dWorldGetAutoDisableFlag (dWorldID);

/**
 * @brief Set auto disable flag for newly created bodies.
 * @ingroup disable
 * @param do_auto_disable default is false.
 */
ODE_API void dWorldSetAutoDisableFlag (dWorldID, int do_auto_disable);


/**
 * @defgroup damping Damping
 * @ingroup bodies world
 *
 * Damping serves two purposes: reduce simulation instability, and to allow
 * the bodies to come to rest (and possibly auto-disabling them).
 *
 * Bodies are constructed using the world's current damping parameters. Setting
 * the scales to 0 disables the damping.
 *
 * Here is how it is done: after every time step linear and angular
 * velocities are tested against the corresponding thresholds. If they
 * are above, they are multiplied by (1 - scale). So a negative scale value
 * will actually increase the speed, and values greater than one will
 * make the object oscillate every step; both can make the simulation unstable.
 *
 * To disable damping just set the damping scale to zero.
 *
 * You can also limit the maximum angular velocity. In contrast to the damping
 * functions, the angular velocity is affected before the body is moved.
 * This means that it will introduce errors in joints that are forcing the body
 * to rotate too fast. Some bodies have naturally high angular velocities
 * (like cars' wheels), so you may want to give them a very high (like the default,
 * dInfinity) limit.
 *
 * @note The velocities are damped after the stepper function has moved the
 * object. Otherwise the damping could introduce errors in joints. First the
 * joint constraints are processed by the stepper (moving the body), then
 * the damping is applied.
 *
 * @note The damping happens right after the moved callback is called; this way 
 * it still possible use the exact velocities the body has acquired during the
 * step. You can even use the callback to create your own customized damping.
 */

/**
 * @brief Get the world's linear damping threshold.
 * @ingroup damping
 */
ODE_API dReal dWorldGetLinearDampingThreshold (dWorldID w);

/**
 * @brief Set the world's linear damping threshold.
 * @param threshold The damping won't be applied if the linear speed is
 *        below this threshold. Default is 0.01.
 * @ingroup damping
 */
ODE_API void dWorldSetLinearDampingThreshold(dWorldID w, dReal threshold);

/**
 * @brief Get the world's angular damping threshold.
 * @ingroup damping
 */
ODE_API dReal dWorldGetAngularDampingThreshold (dWorldID w);

/**
 * @brief Set the world's angular damping threshold.
 * @param threshold The damping won't be applied if the angular speed is
 *        below this threshold. Default is 0.01.
 * @ingroup damping
 */
ODE_API void dWorldSetAngularDampingThreshold(dWorldID w, dReal threshold);

/**
 * @brief Get the world's linear damping scale.
 * @ingroup damping
 */
ODE_API dReal dWorldGetLinearDamping (dWorldID w);

/**
 * @brief Set the world's linear damping scale.
 * @param scale The linear damping scale that is to be applied to bodies.
 * Default is 0 (no damping). Should be in the interval [0, 1].
 * @ingroup damping
 */
ODE_API void dWorldSetLinearDamping (dWorldID w, dReal scale);

/**
 * @brief Get the world's angular damping scale.
 * @ingroup damping
 */
ODE_API dReal dWorldGetAngularDamping (dWorldID w);

/**
 * @brief Set the world's angular damping scale.
 * @param scale The angular damping scale that is to be applied to bodies.
 * Default is 0 (no damping). Should be in the interval [0, 1].
 * @ingroup damping
 */
ODE_API void dWorldSetAngularDamping(dWorldID w, dReal scale);

/**
 * @brief Convenience function to set body linear and angular scales.
 * @param linear_scale The linear damping scale that is to be applied to bodies.
 * @param angular_scale The angular damping scale that is to be applied to bodies.
 * @ingroup damping
 */
ODE_API void dWorldSetDamping(dWorldID w,
                                dReal linear_scale,
                                dReal angular_scale);

/**
 * @brief Get the default maximum angular speed.
 * @ingroup damping
 * @sa dBodyGetMaxAngularSpeed()
 */
ODE_API dReal dWorldGetMaxAngularSpeed (dWorldID w);


/**
 * @brief Set the default maximum angular speed for new bodies.
 * @ingroup damping
 * @sa dBodySetMaxAngularSpeed()
 */
ODE_API void dWorldSetMaxAngularSpeed (dWorldID w, dReal max_speed);



/**
 * @defgroup bodies Rigid Bodies
 *
 * A rigid body has various properties from the point of view of the
 * simulation. Some properties change over time:
 *
 *  @li Position vector (x,y,z) of the body's point of reference.
 *      Currently the point of reference must correspond to the body's center of mass.
 *  @li Linear velocity of the point of reference, a vector (vx,vy,vz).
 *  @li Orientation of a body, represented by a quaternion (qs,qx,qy,qz) or
 *      a 3x3 rotation matrix.
 *  @li Angular velocity vector (wx,wy,wz) which describes how the orientation
 *      changes over time.
 *
 * Other body properties are usually constant over time:
 *
 *  @li Mass of the body.
 *  @li Position of the center of mass with respect to the point of reference.
 *      In the current implementation the center of mass and the point of
 *      reference must coincide.
 *  @li Inertia matrix. This is a 3x3 matrix that describes how the body's mass
 *      is distributed around the center of mass. Conceptually each body has an
 *      x-y-z coordinate frame embedded in it that moves and rotates with the body.
 *
 * The origin of this coordinate frame is the body's point of reference. Some values
 * in ODE (vectors, matrices etc) are relative to the body coordinate frame, and others
 * are relative to the global coordinate frame.
 *
 * Note that the shape of a rigid body is not a dynamical property (except insofar as
 * it influences the various mass properties). It is only collision detection that cares
 * about the detailed shape of the body.
 */


/**
 * @brief Get auto disable linear average threshold.
 * @ingroup bodies disable
 * @return the threshold
 */
ODE_API dReal dBodyGetAutoDisableLinearThreshold (dBodyID);

/**
 * @brief Set auto disable linear average threshold.
 * @ingroup bodies disable
 * @return the threshold
 */
ODE_API void  dBodySetAutoDisableLinearThreshold (dBodyID, dReal linear_average_threshold);

/**
 * @brief Get auto disable angular average threshold.
 * @ingroup bodies disable
 * @return the threshold
 */
ODE_API dReal dBodyGetAutoDisableAngularThreshold (dBodyID);

/**
 * @brief Set auto disable angular average threshold.
 * @ingroup bodies disable
 * @return the threshold
 */
ODE_API void  dBodySetAutoDisableAngularThreshold (dBodyID, dReal angular_average_threshold);

/**
 * @brief Get auto disable average size (samples count).
 * @ingroup bodies disable
 * @return the nr of steps/size.
 */
ODE_API int dBodyGetAutoDisableAverageSamplesCount (dBodyID);

/**
 * @brief Set auto disable average buffer size (average steps).
 * @ingroup bodies disable
 * @param average_samples_count the nr of samples to review.
 */
ODE_API void dBodySetAutoDisableAverageSamplesCount (dBodyID, unsigned int average_samples_count);


/**
 * @brief Get auto steps a body must be thought of as idle to disable
 * @ingroup bodies disable
 * @return the nr of steps
 */
ODE_API int dBodyGetAutoDisableSteps (dBodyID);

/**
 * @brief Set auto disable steps.
 * @ingroup bodies disable
 * @param steps the nr of steps.
 */
ODE_API void dBodySetAutoDisableSteps (dBodyID, int steps);

/**
 * @brief Get auto disable time.
 * @ingroup bodies disable
 * @return nr of seconds
 */
ODE_API dReal dBodyGetAutoDisableTime (dBodyID);

/**
 * @brief Set auto disable time.
 * @ingroup bodies disable
 * @param time nr of seconds.
 */
ODE_API void  dBodySetAutoDisableTime (dBodyID, dReal time);

/**
 * @brief Get auto disable flag.
 * @ingroup bodies disable
 * @return 0 or 1
 */
ODE_API int dBodyGetAutoDisableFlag (dBodyID);

/**
 * @brief Set auto disable flag.
 * @ingroup bodies disable
 * @param do_auto_disable 0 or 1
 */
ODE_API void dBodySetAutoDisableFlag (dBodyID, int do_auto_disable);

/**
 * @brief Set auto disable defaults.
 * @remarks
 * Set the values for the body to those set as default for the world.
 * @ingroup bodies disable
 */
ODE_API void  dBodySetAutoDisableDefaults (dBodyID);


/**
 * @brief Retrieves the world attached to te given body.
 * @remarks
 * 
 * @ingroup bodies
 */
ODE_API dWorldID dBodyGetWorld (dBodyID);

/**
 * @brief Create a body in given world.
 * @remarks
 * Default mass parameters are at position (0,0,0).
 * @ingroup bodies
 */
ODE_API dBodyID dBodyCreate (dWorldID);

/**
 * @brief Destroy a body.
 * @remarks
 * All joints that are attached to this body will be put into limbo:
 * i.e. unattached and not affecting the simulation, but they will NOT be
 * deleted.
 * @ingroup bodies
 */
ODE_API void dBodyDestroy (dBodyID);

/**
 * @brief Set the body's user-data pointer.
 * @ingroup bodies
 * @param data arbitraty pointer
 */
ODE_API void  dBodySetData (dBodyID, void *data);

/**
 * @brief Get the body's user-data pointer.
 * @ingroup bodies
 * @return a pointer to the user's data.
 */
ODE_API void *dBodyGetData (dBodyID);

/**
 * @brief Set position of a body.
 * @remarks
 * After setting, the outcome of the simulation is undefined
 * if the new configuration is inconsistent with the joints/constraints
 * that are present.
 * @ingroup bodies
 */
ODE_API void dBodySetPosition   (dBodyID, dReal x, dReal y, dReal z);

/**
 * @brief Set the orientation of a body.
 * @ingroup bodies
 * @remarks
 * After setting, the outcome of the simulation is undefined
 * if the new configuration is inconsistent with the joints/constraints
 * that are present.
 */
ODE_API void dBodySetRotation   (dBodyID, const dMatrix3 R);

/**
 * @brief Set the orientation of a body.
 * @ingroup bodies
 * @remarks
 * After setting, the outcome of the simulation is undefined
 * if the new configuration is inconsistent with the joints/constraints
 * that are present.
 */
ODE_API void dBodySetQuaternion (dBodyID, const dQuaternion q);

/**
 * @brief Set the linear velocity of a body.
 * @ingroup bodies
 */
ODE_API void dBodySetLinearVel  (dBodyID, dReal x, dReal y, dReal z);

/**
 * @brief Set the angular velocity of a body.
 * @ingroup bodies
 */
ODE_API void dBodySetAngularVel (dBodyID, dReal x, dReal y, dReal z);

/**
 * @brief Get the position of a body.
 * @ingroup bodies
 * @remarks
 * When getting, the returned values are pointers to internal data structures,
 * so the vectors are valid until any changes are made to the rigid body
 * system structure.
 * @sa dBodyCopyPosition
 */
ODE_API const dReal * dBodyGetPosition (dBodyID);


/**
 * @brief Copy the position of a body into a vector.
 * @ingroup bodies
 * @param body  the body to query
 * @param pos   a copy of the body position
 * @sa dBodyGetPosition
 */
ODE_API void dBodyCopyPosition (dBodyID body, dVector3 pos);


/**
 * @brief Get the rotation of a body.
 * @ingroup bodies
 * @return pointer to a 4x3 rotation matrix.
 */
ODE_API const dReal * dBodyGetRotation (dBodyID);


/**
 * @brief Copy the rotation of a body.
 * @ingroup bodies
 * @param body   the body to query
 * @param R      a copy of the rotation matrix
 * @sa dBodyGetRotation
 */
ODE_API void dBodyCopyRotation (dBodyID, dMatrix3 R);


/**
 * @brief Get the rotation of a body.
 * @ingroup bodies
 * @return pointer to 4 scalars that represent the quaternion.
 */
ODE_API const dReal * dBodyGetQuaternion (dBodyID);


/**
 * @brief Copy the orientation of a body into a quaternion.
 * @ingroup bodies
 * @param body  the body to query
 * @param quat  a copy of the orientation quaternion
 * @sa dBodyGetQuaternion
 */
ODE_API void dBodyCopyQuaternion(dBodyID body, dQuaternion quat);


/**
 * @brief Get the linear velocity of a body.
 * @ingroup bodies
 */
ODE_API const dReal * dBodyGetLinearVel (dBodyID);

/**
 * @brief Get the angular velocity of a body.
 * @ingroup bodies
 */
ODE_API const dReal * dBodyGetAngularVel (dBodyID);

/**
 * @brief Set the mass of a body.
 * @ingroup bodies
 */
ODE_API void dBodySetMass (dBodyID, const dMass *mass);

/**
 * @brief Get the mass of a body.
 * @ingroup bodies
 */
ODE_API void dBodyGetMass (dBodyID, dMass *mass);

/**
 * @brief Add force at centre of mass of body in absolute coordinates.
 * @ingroup bodies
 */
ODE_API void dBodyAddForce            (dBodyID, dReal fx, dReal fy, dReal fz);

/**
 * @brief Add torque at centre of mass of body in absolute coordinates.
 * @ingroup bodies
 */
ODE_API void dBodyAddTorque           (dBodyID, dReal fx, dReal fy, dReal fz);

/**
 * @brief Add force at centre of mass of body in coordinates relative to body.
 * @ingroup bodies
 */
ODE_API void dBodyAddRelForce         (dBodyID, dReal fx, dReal fy, dReal fz);

/**
 * @brief Add torque at centre of mass of body in coordinates relative to body.
 * @ingroup bodies
 */
ODE_API void dBodyAddRelTorque        (dBodyID, dReal fx, dReal fy, dReal fz);

/**
 * @brief Add force at specified point in body in global coordinates.
 * @ingroup bodies
 */
ODE_API void dBodyAddForceAtPos       (dBodyID, dReal fx, dReal fy, dReal fz,
			                dReal px, dReal py, dReal pz);
/**
 * @brief Add force at specified point in body in local coordinates.
 * @ingroup bodies
 */
ODE_API void dBodyAddForceAtRelPos    (dBodyID, dReal fx, dReal fy, dReal fz,
			                dReal px, dReal py, dReal pz);
/**
 * @brief Add force at specified point in body in global coordinates.
 * @ingroup bodies
 */
ODE_API void dBodyAddRelForceAtPos    (dBodyID, dReal fx, dReal fy, dReal fz,
			                dReal px, dReal py, dReal pz);
/**
 * @brief Add force at specified point in body in local coordinates.
 * @ingroup bodies
 */
ODE_API void dBodyAddRelForceAtRelPos (dBodyID, dReal fx, dReal fy, dReal fz,
			                dReal px, dReal py, dReal pz);

/**
 * @brief Return the current accumulated force vector.
 * @return points to an array of 3 reals.
 * @remarks
 * The returned values are pointers to internal data structures, so
 * the vectors are only valid until any changes are made to the rigid
 * body system.
 * @ingroup bodies
 */
ODE_API const dReal * dBodyGetForce (dBodyID);

/**
 * @brief Return the current accumulated torque vector.
 * @return points to an array of 3 reals.
 * @remarks
 * The returned values are pointers to internal data structures, so
 * the vectors are only valid until any changes are made to the rigid
 * body system.
 * @ingroup bodies
 */
ODE_API const dReal * dBodyGetTorque (dBodyID);

/**
 * @brief Set the body force accumulation vector.
 * @remarks
 * This is mostly useful to zero the force and torque for deactivated bodies
 * before they are reactivated, in the case where the force-adding functions
 * were called on them while they were deactivated.
 * @ingroup bodies
 */
ODE_API void dBodySetForce  (dBodyID b, dReal x, dReal y, dReal z);

/**
 * @brief Set the body torque accumulation vector.
 * @remarks
 * This is mostly useful to zero the force and torque for deactivated bodies
 * before they are reactivated, in the case where the force-adding functions
 * were called on them while they were deactivated.
 * @ingroup bodies
 */
ODE_API void dBodySetTorque (dBodyID b, dReal x, dReal y, dReal z);

/**
 * @brief Get world position of a relative point on body.
 * @ingroup bodies
 * @param result will contain the result.
 */
ODE_API void dBodyGetRelPointPos
(
  dBodyID, dReal px, dReal py, dReal pz,
  dVector3 result
);

/**
 * @brief Get velocity vector in global coords of a relative point on body.
 * @ingroup bodies
 * @param result will contain the result.
 */
ODE_API void dBodyGetRelPointVel
(
  dBodyID, dReal px, dReal py, dReal pz,
  dVector3 result
);

/**
 * @brief Get velocity vector in global coords of a globally
 * specified point on a body.
 * @ingroup bodies
 * @param result will contain the result.
 */
ODE_API void dBodyGetPointVel
(
  dBodyID, dReal px, dReal py, dReal pz,
  dVector3 result
);

/**
 * @brief takes a point in global coordinates and returns
 * the point's position in body-relative coordinates.
 * @remarks
 * This is the inverse of dBodyGetRelPointPos()
 * @ingroup bodies
 * @param result will contain the result.
 */
ODE_API void dBodyGetPosRelPoint
(
  dBodyID, dReal px, dReal py, dReal pz,
  dVector3 result
);

/**
 * @brief Convert from local to world coordinates.
 * @ingroup bodies
 * @param result will contain the result.
 */
ODE_API void dBodyVectorToWorld
(
  dBodyID, dReal px, dReal py, dReal pz,
  dVector3 result
);

/**
 * @brief Convert from world to local coordinates.
 * @ingroup bodies
 * @param result will contain the result.
 */
ODE_API void dBodyVectorFromWorld
(
  dBodyID, dReal px, dReal py, dReal pz,
  dVector3 result
);

/**
 * @brief controls the way a body's orientation is updated at each timestep.
 * @ingroup bodies
 * @param mode can be 0 or 1:
 * \li 0: An ``infinitesimal'' orientation update is used.
 * This is fast to compute, but it can occasionally cause inaccuracies
 * for bodies that are rotating at high speed, especially when those
 * bodies are joined to other bodies.
 * This is the default for every new body that is created.
 * \li 1: A ``finite'' orientation update is used.
 * This is more costly to compute, but will be more accurate for high
 * speed rotations.
 * @remarks
 * Note however that high speed rotations can result in many types of
 * error in a simulation, and the finite mode will only fix one of those
 * sources of error.
 */
ODE_API void dBodySetFiniteRotationMode (dBodyID, int mode);

/**
 * @brief sets the finite rotation axis for a body.
 * @ingroup bodies
 * @remarks
 * This is axis only has meaning when the finite rotation mode is set
 * If this axis is zero (0,0,0), full finite rotations are performed on
 * the body.
 * If this axis is nonzero, the body is rotated by performing a partial finite
 * rotation along the axis direction followed by an infinitesimal rotation
 * along an orthogonal direction.
 * @remarks
 * This can be useful to alleviate certain sources of error caused by quickly
 * spinning bodies. For example, if a car wheel is rotating at high speed
 * you can call this function with the wheel's hinge axis as the argument to
 * try and improve its behavior.
 */
ODE_API void dBodySetFiniteRotationAxis (dBodyID, dReal x, dReal y, dReal z);

/**
 * @brief Get the way a body's orientation is updated each timestep.
 * @ingroup bodies
 * @return the mode 0 (infitesimal) or 1 (finite).
 */
ODE_API int dBodyGetFiniteRotationMode (dBodyID);

/**
 * @brief Get the finite rotation axis.
 * @param result will contain the axis.
 * @ingroup bodies
 */
ODE_API void dBodyGetFiniteRotationAxis (dBodyID, dVector3 result);

/**
 * @brief Get the number of joints that are attached to this body.
 * @ingroup bodies
 * @return nr of joints
 */
ODE_API int dBodyGetNumJoints (dBodyID b);

/**
 * @brief Return a joint attached to this body, given by index.
 * @ingroup bodies
 * @param index valid range is  0 to n-1 where n is the value returned by
 * dBodyGetNumJoints().
 */
ODE_API dJointID dBodyGetJoint (dBodyID, int index);




/**
 * @brief Set rigid body to dynamic state (default).
 * @param dBodyID identification of body.
 * @ingroup bodies
 */
ODE_API void dBodySetDynamic (dBodyID);

/**
 * @brief Set rigid body to kinematic state.
 * When in kinematic state the body isn't simulated as a dynamic
 * body (it's "unstoppable", doesn't respond to forces),
 * but can still affect dynamic bodies (e.g. in joints).
 * Kinematic bodies can be controlled by position and velocity.
 * @note A kinematic body has infinite mass. If you set its mass
 * to something else, it loses the kinematic state and behaves
 * as a normal dynamic body.
 * @param dBodyID identification of body.
 * @ingroup bodies
 */
ODE_API void dBodySetKinematic (dBodyID);

/**
 * @brief Check wether a body is in kinematic state.
 * @ingroup bodies
 * @return 1 if a body is kinematic or 0 if it is dynamic.
 */
ODE_API int dBodyIsKinematic (dBodyID);

/**
 * @brief Manually enable a body.
 * @param dBodyID identification of body.
 * @ingroup bodies
 */
ODE_API void dBodyEnable (dBodyID);

/**
 * @brief Manually disable a body.
 * @ingroup bodies
 * @remarks
 * A disabled body that is connected through a joint to an enabled body will
 * be automatically re-enabled at the next simulation step.
 */
ODE_API void dBodyDisable (dBodyID);

/**
 * @brief Check wether a body is enabled.
 * @ingroup bodies
 * @return 1 if a body is currently enabled or 0 if it is disabled.
 */
ODE_API int dBodyIsEnabled (dBodyID);

/**
 * @brief Set whether the body is influenced by the world's gravity or not.
 * @ingroup bodies
 * @param mode when nonzero gravity affects this body.
 * @remarks
 * Newly created bodies are always influenced by the world's gravity.
 */
ODE_API void dBodySetGravityMode (dBodyID b, int mode);

/**
 * @brief Get whether the body is influenced by the world's gravity or not.
 * @ingroup bodies
 * @return nonzero means gravity affects this body.
 */
ODE_API int dBodyGetGravityMode (dBodyID b);

/**
 * @brief Set the 'moved' callback of a body.
 *
 * Whenever a body has its position or rotation changed during the
 * timestep, the callback will be called (with body as the argument).
 * Use it to know which body may need an update in an external
 * structure (like a 3D engine).
 *
 * @param b the body that needs to be watched.
 * @param callback the callback to be invoked when the body moves. Set to zero
 * to disable.
 * @ingroup bodies
 */
ODE_API void dBodySetMovedCallback(dBodyID b, void (*callback)(dBodyID));


/**
 * @brief Return the first geom associated with the body.
 * 
 * You can traverse through the geoms by repeatedly calling
 * dBodyGetNextGeom().
 *
 * @return the first geom attached to this body, or 0.
 * @ingroup bodies
 */
ODE_API dGeomID dBodyGetFirstGeom (dBodyID b);


/**
 * @brief returns the next geom associated with the same body.
 * @param g a geom attached to some body.
 * @return the next geom attached to the same body, or 0.
 * @sa dBodyGetFirstGeom
 * @ingroup bodies
 */
ODE_API dGeomID dBodyGetNextGeom (dGeomID g);


/**
 * @brief Resets the damping settings to the current world's settings.
 * @ingroup bodies damping
 */
ODE_API void dBodySetDampingDefaults(dBodyID b);

/**
 * @brief Get the body's linear damping scale.
 * @ingroup bodies damping
 */
ODE_API dReal dBodyGetLinearDamping (dBodyID b);

/**
 * @brief Set the body's linear damping scale.
 * @param scale The linear damping scale. Should be in the interval [0, 1].
 * @ingroup bodies damping
 * @remarks From now on the body will not use the world's linear damping
 * scale until dBodySetDampingDefaults() is called.
 * @sa dBodySetDampingDefaults()
 */
ODE_API void dBodySetLinearDamping(dBodyID b, dReal scale);

/**
 * @brief Get the body's angular damping scale.
 * @ingroup bodies damping
 * @remarks If the body's angular damping scale was not set, this function
 * returns the world's angular damping scale.
 */
ODE_API dReal dBodyGetAngularDamping (dBodyID b);

/**
 * @brief Set the body's angular damping scale.
 * @param scale The angular damping scale. Should be in the interval [0, 1].
 * @ingroup bodies damping
 * @remarks From now on the body will not use the world's angular damping
 * scale until dBodyResetAngularDamping() is called.
 * @sa dBodyResetAngularDamping()
 */
ODE_API void dBodySetAngularDamping(dBodyID b, dReal scale);

/**
 * @brief Convenience function to set linear and angular scales at once.
 * @param linear_scale The linear damping scale. Should be in the interval [0, 1].
 * @param angular_scale The angular damping scale. Should be in the interval [0, 1].
 * @ingroup bodies damping
 * @sa dBodySetLinearDamping() dBodySetAngularDamping()
 */
ODE_API void dBodySetDamping(dBodyID b, dReal linear_scale, dReal angular_scale);

/**
 * @brief Get the body's linear damping threshold.
 * @ingroup bodies damping
 */
ODE_API dReal dBodyGetLinearDampingThreshold (dBodyID b);

/**
 * @brief Set the body's linear damping threshold.
 * @param threshold The linear threshold to be used. Damping
 *      is only applied if the linear speed is above this limit.
 * @ingroup bodies damping
 */
ODE_API void dBodySetLinearDampingThreshold(dBodyID b, dReal threshold);

/**
 * @brief Get the body's angular damping threshold.
 * @ingroup bodies damping
 */
ODE_API dReal dBodyGetAngularDampingThreshold (dBodyID b);

/**
 * @brief Set the body's angular damping threshold.
 * @param threshold The angular threshold to be used. Damping is
 *      only used if the angular speed is above this limit.
 * @ingroup bodies damping
 */
ODE_API void dBodySetAngularDampingThreshold(dBodyID b, dReal threshold);

/**
 * @brief Get the body's maximum angular speed.
 * @ingroup damping bodies
 * @sa dWorldGetMaxAngularSpeed()
 */
ODE_API dReal dBodyGetMaxAngularSpeed (dBodyID b);

/**
 * @brief Set the body's maximum angular speed.
 * @ingroup damping bodies
 * @sa dWorldSetMaxAngularSpeed() dBodyResetMaxAngularSpeed()
 * The default value is dInfinity, but it's a good idea to limit
 * it at less than 500 if the body has the gyroscopic term
 * enabled.
 */
ODE_API void dBodySetMaxAngularSpeed(dBodyID b, dReal max_speed);



/**
 * @brief Get the body's gyroscopic state.
 *
 * @return nonzero if gyroscopic term computation is enabled (default),
 * zero otherwise.
 * @ingroup bodies
 */
ODE_API int dBodyGetGyroscopicMode(dBodyID b);


/**
 * @brief Enable/disable the body's gyroscopic term.
 *
 * Disabling the gyroscopic term of a body usually improves
 * stability. It also helps turning spining objects, like cars'
 * wheels.
 *
 * @param enabled   nonzero (default) to enable gyroscopic term, 0
 * to disable.
 * @ingroup bodies
 */
ODE_API void dBodySetGyroscopicMode(dBodyID b, int enabled);




/**
 * @defgroup joints Joints
 *
 * In real life a joint is something like a hinge, that is used to connect two
 * objects.
 * In ODE a joint is very similar: It is a relationship that is enforced between
 * two bodies so that they can only have certain positions and orientations
 * relative to each other.
 * This relationship is called a constraint -- the words joint and
 * constraint are often used interchangeably.
 *
 * A joint has a set of parameters that can be set. These include:
 *
 *
 * \li  dParamLoStop Low stop angle or position. Setting this to
 *	-dInfinity (the default value) turns off the low stop.
 *	For rotational joints, this stop must be greater than -pi to be
 *	effective.
 * \li  dParamHiStop High stop angle or position. Setting this to
 *	dInfinity (the default value) turns off the high stop.
 *	For rotational joints, this stop must be less than pi to be
 *	effective.
 *	If the high stop is less than the low stop then both stops will
 *	be ineffective.
 * \li  dParamVel Desired motor velocity (this will be an angular or
 *	linear velocity).
 * \li  dParamFMax The maximum force or torque that the motor will use to
 *	achieve the desired velocity.
 *	This must always be greater than or equal to zero.
 *	Setting this to zero (the default value) turns off the motor.
 * \li  dParamFudgeFactor The current joint stop/motor implementation has
 *	a small problem:
 *	when the joint is at one stop and the motor is set to move it away
 *	from the stop, too much force may be applied for one time step,
 *	causing a ``jumping'' motion.
 *	This fudge factor is used to scale this excess force.
 *	It should have a value between zero and one (the default value).
 *	If the jumping motion is too visible in a joint, the value can be
 *	reduced.
 *	Making this value too small can prevent the motor from being able to
 *	move the joint away from a stop.
 * \li  dParamBounce The bouncyness of the stops.
 *	This is a restitution parameter in the range 0..1.
 *	0 means the stops are not bouncy at all, 1 means maximum bouncyness.
 * \li  dParamCFM The constraint force mixing (CFM) value used when not
 *	at a stop.
 * \li  dParamStopERP The error reduction parameter (ERP) used by the
 *	stops.
 * \li  dParamStopCFM The constraint force mixing (CFM) value used by the
 *	stops. Together with the ERP value this can be used to get spongy or
 *	soft stops.
 *	Note that this is intended for unpowered joints, it does not really
 *	work as expected when a powered joint reaches its limit.
 * \li  dParamSuspensionERP Suspension error reduction parameter (ERP).
 *	Currently this is only implemented on the hinge-2 joint.
 * \li  dParamSuspensionCFM Suspension constraint force mixing (CFM) value.
 *	Currently this is only implemented on the hinge-2 joint.
 *
 * If a particular parameter is not implemented by a given joint, setting it
 * will have no effect.
 * These parameter names can be optionally followed by a digit (2 or 3)
 * to indicate the second or third set of parameters, e.g. for the second axis
 * in a hinge-2 joint, or the third axis in an AMotor joint.
 */


/**
 * @brief Create a new joint of the ball type.
 * @ingroup joints
 * @remarks
 * The joint is initially in "limbo" (i.e. it has no effect on the simulation)
 * because it does not connect to any bodies.
 * @param dJointGroupID set to 0 to allocate the joint normally.
 * If it is nonzero the joint is allocated in the given joint group.
 */
ODE_API dJointID dJointCreateBall (dWorldID, dJointGroupID);

/**
 * @brief Create a new joint of the hinge type.
 * @ingroup joints
 * @param dJointGroupID set to 0 to allocate the joint normally.
 * If it is nonzero the joint is allocated in the given joint group.
 */
ODE_API dJointID dJointCreateHinge (dWorldID, dJointGroupID);

/**
 * @brief Create a new joint of the slider type.
 * @ingroup joints
 * @param dJointGroupID set to 0 to allocate the joint normally.
 * If it is nonzero the joint is allocated in the given joint group.
 */
ODE_API dJointID dJointCreateSlider (dWorldID, dJointGroupID);

/**
 * @brief Create a new joint of the contact type.
 * @ingroup joints
 * @param dJointGroupID set to 0 to allocate the joint normally.
 * If it is nonzero the joint is allocated in the given joint group.
 */
ODE_API dJointID dJointCreateContact (dWorldID, dJointGroupID, const dContact *);

/**
 * @brief Create a new joint of the hinge2 type.
 * @ingroup joints
 * @param dJointGroupID set to 0 to allocate the joint normally.
 * If it is nonzero the joint is allocated in the given joint group.
 */
ODE_API dJointID dJointCreateHinge2 (dWorldID, dJointGroupID);

/**
 * @brief Create a new joint of the universal type.
 * @ingroup joints
 * @param dJointGroupID set to 0 to allocate the joint normally.
 * If it is nonzero the joint is allocated in the given joint group.
 */
ODE_API dJointID dJointCreateUniversal (dWorldID, dJointGroupID);

/**
 * @brief Create a new joint of the PR (Prismatic and Rotoide) type.
 * @ingroup joints
 * @param dJointGroupID set to 0 to allocate the joint normally.
 * If it is nonzero the joint is allocated in the given joint group.
 */
ODE_API dJointID dJointCreatePR (dWorldID, dJointGroupID);

  /**
   * @brief Create a new joint of the PU (Prismatic and Universal) type.
   * @ingroup joints
   * @param dJointGroupID set to 0 to allocate the joint normally.
   * If it is nonzero the joint is allocated in the given joint group.
   */
  ODE_API dJointID dJointCreatePU (dWorldID, dJointGroupID);

  /**
   * @brief Create a new joint of the Piston type.
   * @ingroup joints
   * @param dJointGroupID set to 0 to allocate the joint normally.
   *                      If it is nonzero the joint is allocated in the given
   *                      joint group.
   */
  ODE_API dJointID dJointCreatePiston (dWorldID, dJointGroupID);

/**
 * @brief Create a new joint of the fixed type.
 * @ingroup joints
 * @param dJointGroupID set to 0 to allocate the joint normally.
 * If it is nonzero the joint is allocated in the given joint group.
 */
ODE_API dJointID dJointCreateFixed (dWorldID, dJointGroupID);

ODE_API dJointID dJointCreateNull (dWorldID, dJointGroupID);

/**
 * @brief Create a new joint of the A-motor type.
 * @ingroup joints
 * @param dJointGroupID set to 0 to allocate the joint normally.
 * If it is nonzero the joint is allocated in the given joint group.
 */
ODE_API dJointID dJointCreateAMotor (dWorldID, dJointGroupID);

/**
 * @brief Create a new joint of the L-motor type.
 * @ingroup joints
 * @param dJointGroupID set to 0 to allocate the joint normally.
 * If it is nonzero the joint is allocated in the given joint group.
 */
ODE_API dJointID dJointCreateLMotor (dWorldID, dJointGroupID);

/**
 * @brief Create a new joint of the plane-2d type.
 * @ingroup joints
 * @param dJointGroupID set to 0 to allocate the joint normally.
 * If it is nonzero the joint is allocated in the given joint group.
 */
ODE_API dJointID dJointCreatePlane2D (dWorldID, dJointGroupID);

/**
 * @brief Destroy a joint.
 * @ingroup joints
 *
 * disconnects it from its attached bodies and removing it from the world.
 * However, if the joint is a member of a group then this function has no
 * effect - to destroy that joint the group must be emptied or destroyed.
 */
ODE_API void dJointDestroy (dJointID);


/**
 * @brief Create a joint group
 * @ingroup joints
 * @param max_size deprecated. Set to 0.
 */
ODE_API dJointGroupID dJointGroupCreate (int max_size);

/**
 * @brief Destroy a joint group.
 * @ingroup joints
 *
 * All joints in the joint group will be destroyed.
 */
ODE_API void dJointGroupDestroy (dJointGroupID);

/**
 * @brief Empty a joint group.
 * @ingroup joints
 *
 * All joints in the joint group will be destroyed,
 * but the joint group itself will not be destroyed.
 */
ODE_API void dJointGroupEmpty (dJointGroupID);

/**
 * @brief Return the number of bodies attached to the joint
 * @ingroup joints
 */
ODE_API int dJointGetNumBodies(dJointID);

/**
 * @brief Attach the joint to some new bodies.
 * @ingroup joints
 *
 * If the joint is already attached, it will be detached from the old bodies
 * first.
 * To attach this joint to only one body, set body1 or body2 to zero - a zero
 * body refers to the static environment.
 * Setting both bodies to zero puts the joint into "limbo", i.e. it will
 * have no effect on the simulation.
 * @remarks
 * Some joints, like hinge-2 need to be attached to two bodies to work.
 */
ODE_API void dJointAttach (dJointID, dBodyID body1, dBodyID body2);

/**
 * @brief Manually enable a joint.
 * @param dJointID identification of joint.
 * @ingroup joints
 */
ODE_API void dJointEnable (dJointID);

/**
 * @brief Manually disable a joint.
 * @ingroup joints
 * @remarks
 * A disabled joint will not affect the simulation, but will maintain the anchors and
 * axes so it can be enabled later.
 */
ODE_API void dJointDisable (dJointID);

/**
 * @brief Check wether a joint is enabled.
 * @ingroup joints
 * @return 1 if a joint is currently enabled or 0 if it is disabled.
 */
ODE_API int dJointIsEnabled (dJointID);

/**
 * @brief Set the user-data pointer
 * @ingroup joints
 */
ODE_API void dJointSetData (dJointID, void *data);

/**
 * @brief Get the user-data pointer
 * @ingroup joints
 */
ODE_API void *dJointGetData (dJointID);

/**
 * @brief Get the type of the joint
 * @ingroup joints
 * @return the type, being one of these:
 * \li dJointTypeBall
 * \li dJointTypeHinge
 * \li dJointTypeSlider
 * \li dJointTypeContact
 * \li dJointTypeUniversal
 * \li dJointTypeHinge2
 * \li dJointTypeFixed
 * \li dJointTypeNull
 * \li dJointTypeAMotor
 * \li dJointTypeLMotor
 * \li dJointTypePlane2D
 * \li dJointTypePR
 * \li dJointTypePU
 * \li dJointTypePiston
 */
ODE_API dJointType dJointGetType (dJointID);

/**
 * @brief Return the bodies that this joint connects.
 * @ingroup joints
 * @param index return the first (0) or second (1) body.
 * @remarks
 * If one of these returned body IDs is zero, the joint connects the other body
 * to the static environment.
 * If both body IDs are zero, the joint is in ``limbo'' and has no effect on
 * the simulation.
 */
ODE_API dBodyID dJointGetBody (dJointID, int index);

/**
 * @brief Sets the datastructure that is to receive the feedback.
 *
 * The feedback can be used by the user, so that it is known how
 * much force an individual joint exerts.
 * @ingroup joints
 */
ODE_API void dJointSetFeedback (dJointID, dJointFeedback *);

/**
 * @brief Gets the datastructure that is to receive the feedback.
 * @ingroup joints
 */
ODE_API dJointFeedback *dJointGetFeedback (dJointID);

/**
 * @brief Set the joint anchor point.
 * @ingroup joints
 *
 * The joint will try to keep this point on each body
 * together. The input is specified in world coordinates.
 */
ODE_API void dJointSetBallAnchor (dJointID, dReal x, dReal y, dReal z);

/**
 * @brief Set the joint anchor point.
 * @ingroup joints
 */
ODE_API void dJointSetBallAnchor2 (dJointID, dReal x, dReal y, dReal z);

/**
 * @brief Param setting for Ball joints
 * @ingroup joints
 */
ODE_API void dJointSetBallParam (dJointID, int parameter, dReal value);

/**
 * @brief Set hinge anchor parameter.
 * @ingroup joints
 */
ODE_API void dJointSetHingeAnchor (dJointID, dReal x, dReal y, dReal z);

ODE_API void dJointSetHingeAnchorDelta (dJointID, dReal x, dReal y, dReal z, dReal ax, dReal ay, dReal az);

/**
 * @brief Set hinge axis.
 * @ingroup joints
 */
ODE_API void dJointSetHingeAxis (dJointID, dReal x, dReal y, dReal z);

/**
 * @brief Set the Hinge axis as if the 2 bodies were already at angle appart.
 * @ingroup joints
 *
 * This function initialize the Axis and the relative orientation of each body
 * as if body1 was rotated around the axis by the angle value. \br
 * Ex:
 * <PRE>
 * dJointSetHingeAxis(jId, 1, 0, 0);
 * // If you request the position you will have: dJointGetHingeAngle(jId) == 0
 * dJointSetHingeAxisDelta(jId, 1, 0, 0, 0.23);
 * // If you request the position you will have: dJointGetHingeAngle(jId) == 0.23
 * </PRE>

 * @param j The Hinge joint ID for which the axis will be set
 * @param x The X component of the axis in world frame
 * @param y The Y component of the axis in world frame
 * @param z The Z component of the axis in world frame
 * @param angle The angle for the offset of the relative orientation.
 *              As if body1 was rotated by angle when the Axis was set (see below).
 *              The rotation is around the new Hinge axis.
 *
 * @note Usually the function dJointSetHingeAxis set the current position of body1
 *       and body2 as the zero angle position. This function set the current position
 *       as the if the 2 bodies where \b angle appart.
 * @warning Calling dJointSetHingeAnchor or dJointSetHingeAxis will reset the "zero"
 *          angle position.
 */
ODE_API void dJointSetHingeAxisOffset (dJointID j, dReal x, dReal y, dReal z, dReal angle);

/**
 * @brief set joint parameter
 * @ingroup joints
 */
ODE_API void dJointSetHingeParam (dJointID, int parameter, dReal value);

/**
 * @brief Applies the torque about the hinge axis.
 *
 * That is, it applies a torque with specified magnitude in the direction
 * of the hinge axis, to body 1, and with the same magnitude but in opposite
 * direction to body 2. This function is just a wrapper for dBodyAddTorque()}
 * @ingroup joints
 */
ODE_API void dJointAddHingeTorque(dJointID joint, dReal torque);

/**
 * @brief set the joint axis
 * @ingroup joints
 */
ODE_API void dJointSetSliderAxis (dJointID, dReal x, dReal y, dReal z);

/**
 * @ingroup joints
 */
ODE_API void dJointSetSliderAxisDelta (dJointID, dReal x, dReal y, dReal z, dReal ax, dReal ay, dReal az);

/**
 * @brief set joint parameter
 * @ingroup joints
 */
ODE_API void dJointSetSliderParam (dJointID, int parameter, dReal value);

/**
 * @brief Applies the given force in the slider's direction.
 *
 * That is, it applies a force with specified magnitude, in the direction of
 * slider's axis, to body1, and with the same magnitude but opposite
 * direction to body2.  This function is just a wrapper for dBodyAddForce().
 * @ingroup joints
 */
ODE_API void dJointAddSliderForce(dJointID joint, dReal force);

/**
 * @brief set anchor
 * @ingroup joints
 */
ODE_API void dJointSetHinge2Anchor (dJointID, dReal x, dReal y, dReal z);

/**
 * @brief set axis
 * @ingroup joints
 */
ODE_API void dJointSetHinge2Axis1 (dJointID, dReal x, dReal y, dReal z);

/**
 * @brief set axis
 * @ingroup joints
 */
ODE_API void dJointSetHinge2Axis2 (dJointID, dReal x, dReal y, dReal z);

/**
 * @brief set joint parameter
 * @ingroup joints
 */
ODE_API void dJointSetHinge2Param (dJointID, int parameter, dReal value);

/**
 * @brief Applies torque1 about the hinge2's axis 1, torque2 about the
 * hinge2's axis 2.
 * @remarks  This function is just a wrapper for dBodyAddTorque().
 * @ingroup joints
 */
ODE_API void dJointAddHinge2Torques(dJointID joint, dReal torque1, dReal torque2);

/**
 * @brief set anchor
 * @ingroup joints
 */
ODE_API void dJointSetUniversalAnchor (dJointID, dReal x, dReal y, dReal z);

/**
 * @brief set axis
 * @ingroup joints
 */
ODE_API void dJointSetUniversalAxis1 (dJointID, dReal x, dReal y, dReal z);

/**
 * @brief Set the Universal axis1 as if the 2 bodies were already at 
 *        offset1 and offset2 appart with respect to axis1 and axis2.
 * @ingroup joints
 *
 * This function initialize the axis1 and the relative orientation of 
 * each body as if body1 was rotated around the new axis1 by the offset1 
 * value and as if body2 was rotated around the axis2 by offset2. \br
 * Ex:
* <PRE>
 * dJointSetHuniversalAxis1(jId, 1, 0, 0);
 * // If you request the position you will have: dJointGetUniversalAngle1(jId) == 0
 * // If you request the position you will have: dJointGetUniversalAngle2(jId) == 0
 * dJointSetHuniversalAxis1Offset(jId, 1, 0, 0, 0.2, 0.17);
 * // If you request the position you will have: dJointGetUniversalAngle1(jId) == 0.2
 * // If you request the position you will have: dJointGetUniversalAngle2(jId) == 0.17
 * </PRE>
 *
 * @param j The Hinge joint ID for which the axis will be set
 * @param x The X component of the axis in world frame
 * @param y The Y component of the axis in world frame
 * @param z The Z component of the axis in world frame
 * @param angle The angle for the offset of the relative orientation.
 *              As if body1 was rotated by angle when the Axis was set (see below).
 *              The rotation is around the new Hinge axis.
 *
 * @note Usually the function dJointSetHingeAxis set the current position of body1
 *       and body2 as the zero angle position. This function set the current position
 *       as the if the 2 bodies where \b offsets appart.
 *
 * @note Any previous offsets are erased.
 *
 * @warning Calling dJointSetUniversalAnchor, dJointSetUnivesalAxis1, 
 *          dJointSetUniversalAxis2, dJointSetUniversalAxis2Offset 
 *          will reset the "zero" angle position.
 */
ODE_API void dJointSetUniversalAxis1Offset (dJointID, dReal x, dReal y, dReal z,
                                            dReal offset1, dReal offset2);

/**
 * @brief set axis
 * @ingroup joints
 */
ODE_API void dJointSetUniversalAxis2 (dJointID, dReal x, dReal y, dReal z);

/**
 * @brief Set the Universal axis2 as if the 2 bodies were already at 
 *        offset1 and offset2 appart with respect to axis1 and axis2.
 * @ingroup joints
 *
 * This function initialize the axis2 and the relative orientation of 
 * each body as if body1 was rotated around the axis1 by the offset1 
 * value and as if body2 was rotated around the new axis2 by offset2. \br
 * Ex:
 * <PRE>
 * dJointSetHuniversalAxis2(jId, 0, 1, 0);
 * // If you request the position you will have: dJointGetUniversalAngle1(jId) == 0
 * // If you request the position you will have: dJointGetUniversalAngle2(jId) == 0
 * dJointSetHuniversalAxis2Offset(jId, 0, 1, 0, 0.2, 0.17);
 * // If you request the position you will have: dJointGetUniversalAngle1(jId) == 0.2
 * // If you request the position you will have: dJointGetUniversalAngle2(jId) == 0.17
 * </PRE>

 * @param j The Hinge joint ID for which the axis will be set
 * @param x The X component of the axis in world frame
 * @param y The Y component of the axis in world frame
 * @param z The Z component of the axis in world frame
 * @param angle The angle for the offset of the relative orientation.
 *              As if body1 was rotated by angle when the Axis was set (see below).
 *              The rotation is around the new Hinge axis.
 *
 * @note Usually the function dJointSetHingeAxis set the current position of body1
 *       and body2 as the zero angle position. This function set the current position
 *       as the if the 2 bodies where \b offsets appart.
 *
 * @note Any previous offsets are erased.
 *
 * @warning Calling dJointSetUniversalAnchor, dJointSetUnivesalAxis1, 
 *          dJointSetUniversalAxis2, dJointSetUniversalAxis2Offset 
 *          will reset the "zero" angle position.
 */


ODE_API void dJointSetUniversalAxis2Offset (dJointID, dReal x, dReal y, dReal z,
                                            dReal offset1, dReal offset2);

/**
 * @brief set joint parameter
 * @ingroup joints
 */
ODE_API void dJointSetUniversalParam (dJointID, int parameter, dReal value);

/**
 * @brief Applies torque1 about the universal's axis 1, torque2 about the
 * universal's axis 2.
 * @remarks This function is just a wrapper for dBodyAddTorque().
 * @ingroup joints
 */
ODE_API void dJointAddUniversalTorques(dJointID joint, dReal torque1, dReal torque2);


/**
 * @brief set anchor
 * @ingroup joints
 */
ODE_API void dJointSetPRAnchor (dJointID, dReal x, dReal y, dReal z);

/**
 * @brief set the axis for the prismatic articulation
 * @ingroup joints
 */
ODE_API void dJointSetPRAxis1 (dJointID, dReal x, dReal y, dReal z);

/**
 * @brief set the axis for the rotoide articulation
 * @ingroup joints
 */
ODE_API void dJointSetPRAxis2 (dJointID, dReal x, dReal y, dReal z);

/**
 * @brief set joint parameter
 * @ingroup joints
 *
 * @note parameterX where X equal 2 refer to parameter for the rotoide articulation
 */
ODE_API void dJointSetPRParam (dJointID, int parameter, dReal value);

/**
 * @brief Applies the torque about the rotoide axis of the PR joint
 *
 * That is, it applies a torque with specified magnitude in the direction 
 * of the rotoide axis, to body 1, and with the same magnitude but in opposite
 * direction to body 2. This function is just a wrapper for dBodyAddTorque()}
 * @ingroup joints
 */
ODE_API void dJointAddPRTorque (dJointID j, dReal torque);


  /**
  * @brief set anchor
  * @ingroup joints
  */
  ODE_API void dJointSetPUAnchor (dJointID, dReal x, dReal y, dReal z);

  /**
   * @brief set anchor
   * @ingroup joints
   */
  ODE_API_DEPRECATED ODE_API void dJointSetPUAnchorDelta (dJointID, dReal x, dReal y, dReal z,
                                                          dReal dx, dReal dy, dReal dz);

  /**
   * @brief Set the PU anchor as if the 2 bodies were already at [dx, dy, dz] appart.
   * @ingroup joints
   *
   * This function initialize the anchor and the relative position of each body
   * as if the position between body1 and body2 was already the projection of [dx, dy, dz]
   * along the Piston axis. (i.e as if the body1 was at its current position - [dx,dy,dy] when the
   * axis is set).
   * Ex:
   * <PRE>
   * dReal offset = 3;
   * dVector3 axis;
   * dJointGetPUAxis(jId, axis);
   * dJointSetPUAnchor(jId, 0, 0, 0);
   * // If you request the position you will have: dJointGetPUPosition(jId) == 0
   * dJointSetPUAnchorOffset(jId, 0, 0, 0, axis[X]*offset, axis[Y]*offset, axis[Z]*offset);
   * // If you request the position you will have: dJointGetPUPosition(jId) == offset
   * </PRE>
   * @param j The PU joint for which the anchor point will be set
   * @param x The X position of the anchor point in world frame
   * @param y The Y position of the anchor point in world frame
   * @param z The Z position of the anchor point in world frame
   * @param dx A delta to be substracted to the X position as if the anchor was set
   *           when body1 was at current_position[X] - dx
   * @param dx A delta to be substracted to the Y position as if the anchor was set
   *           when body1 was at current_position[Y] - dy
   * @param dx A delta to be substracted to the Z position as if the anchor was set
   *           when body1 was at current_position[Z] - dz
   */
  ODE_API void dJointSetPUAnchorOffset (dJointID, dReal x, dReal y, dReal z,
                                       dReal dx, dReal dy, dReal dz);

  /**
   * @brief set the axis for the first axis or the universal articulation
   * @ingroup joints
   */
  ODE_API void dJointSetPUAxis1 (dJointID, dReal x, dReal y, dReal z);

  /**
   * @brief set the axis for the second axis or the universal articulation
   * @ingroup joints
   */
  ODE_API void dJointSetPUAxis2 (dJointID, dReal x, dReal y, dReal z);

  /**
   * @brief set the axis for the prismatic articulation
   * @ingroup joints
   */
  ODE_API void dJointSetPUAxis3 (dJointID, dReal x, dReal y, dReal z);

  /**
   * @brief set the axis for the prismatic articulation
   * @ingroup joints
   * @note This function was added for convenience it is the same as
   *       dJointSetPUAxis3
   */
  ODE_API void dJointSetPUAxisP (dJointID id, dReal x, dReal y, dReal z);



  /**
   * @brief set joint parameter
   * @ingroup joints
   *
   * @note parameterX where X equal 2 refer to parameter for second axis of the
   *       universal articulation
   * @note parameterX where X equal 3 refer to parameter for prismatic
   *       articulation
   */
  ODE_API void dJointSetPUParam (dJointID, int parameter, dReal value);

  /**
   * @brief Applies the torque about the rotoide axis of the PU joint
   *
   * That is, it applies a torque with specified magnitude in the direction
   * of the rotoide axis, to body 1, and with the same magnitude but in opposite
   * direction to body 2. This function is just a wrapper for dBodyAddTorque()}
   * @ingroup joints
   */
  ODE_API void dJointAddPUTorque (dJointID j, dReal torque);




  /**
   * @brief set the joint anchor
   * @ingroup joints
   */
  ODE_API void dJointSetPistonAnchor (dJointID, dReal x, dReal y, dReal z);

  /**
   * @brief Set the Piston anchor as if the 2 bodies were already at [dx,dy, dz] appart.
   * @ingroup joints
   *
   * This function initialize the anchor and the relative position of each body
   * as if the position between body1 and body2 was already the projection of [dx, dy, dz]
   * along the Piston axis. (i.e as if the body1 was at its current position - [dx,dy,dy] when the
   * axis is set).
   * Ex:
   * <PRE>
   * dReal offset = 3;
   * dVector3 axis;
   * dJointGetPistonAxis(jId, axis);
   * dJointSetPistonAnchor(jId, 0, 0, 0);
   * // If you request the position you will have: dJointGetPistonPosition(jId) == 0
   * dJointSetPistonAnchorOffset(jId, 0, 0, 0, axis[X]*offset, axis[Y]*offset, axis[Z]*offset);
   * // If you request the position you will have: dJointGetPistonPosition(jId) == offset
   * </PRE>
   * @param j The Piston joint for which the anchor point will be set
   * @param x The X position of the anchor point in world frame
   * @param y The Y position of the anchor point in world frame
   * @param z The Z position of the anchor point in world frame
   * @param dx A delta to be substracted to the X position as if the anchor was set
   *           when body1 was at current_position[X] - dx
   * @param dx A delta to be substracted to the Y position as if the anchor was set
   *           when body1 was at current_position[Y] - dy
   * @param dx A delta to be substracted to the Z position as if the anchor was set
   *           when body1 was at current_position[Z] - dz
   */
  ODE_API void dJointSetPistonAnchorOffset(dJointID j, dReal x, dReal y, dReal z,
                                           dReal dx, dReal dy, dReal dz);

    /**
     * @brief set the joint axis
   * @ingroup joints
   */
  ODE_API void dJointSetPistonAxis (dJointID, dReal x, dReal y, dReal z);

  /**
   * This function set prismatic axis of the joint and also set the position
   * of the joint.
   *
   * @ingroup joints
   * @param j The joint affected by this function
   * @param x The x component of the axis
   * @param y The y component of the axis
   * @param z The z component of the axis
   * @param dx The Initial position of the prismatic join in the x direction
   * @param dy The Initial position of the prismatic join in the y direction
   * @param dz The Initial position of the prismatic join in the z direction
   */
  ODE_API_DEPRECATED ODE_API void dJointSetPistonAxisDelta (dJointID j, dReal x, dReal y, dReal z, dReal ax, dReal ay, dReal az);

  /**
   * @brief set joint parameter
   * @ingroup joints
   */
  ODE_API void dJointSetPistonParam (dJointID, int parameter, dReal value);

  /**
   * @brief Applies the given force in the slider's direction.
   *
   * That is, it applies a force with specified magnitude, in the direction of
   * prismatic's axis, to body1, and with the same magnitude but opposite
   * direction to body2.  This function is just a wrapper for dBodyAddForce().
   * @ingroup joints
   */
  ODE_API void dJointAddPistonForce (dJointID joint, dReal force);


/**
 * @brief Call this on the fixed joint after it has been attached to
 * remember the current desired relative offset and desired relative
 * rotation between the bodies.
 * @ingroup joints
 */
ODE_API void dJointSetFixed (dJointID);

/*
 * @brief Sets joint parameter
 *
 * @ingroup joints
 */
ODE_API void dJointSetFixedParam (dJointID, int parameter, dReal value);

/**
 * @brief set the nr of axes
 * @param num 0..3
 * @ingroup joints
 */
ODE_API void dJointSetAMotorNumAxes (dJointID, int num);

/**
 * @brief set axis
 * @ingroup joints
 */
ODE_API void dJointSetAMotorAxis (dJointID, int anum, int rel,
			  dReal x, dReal y, dReal z);

/**
 * @brief Tell the AMotor what the current angle is along axis anum.
 *
 * This function should only be called in dAMotorUser mode, because in this
 * mode the AMotor has no other way of knowing the joint angles.
 * The angle information is needed if stops have been set along the axis,
 * but it is not needed for axis motors.
 * @ingroup joints
 */
ODE_API void dJointSetAMotorAngle (dJointID, int anum, dReal angle);

/**
 * @brief set joint parameter
 * @ingroup joints
 */
ODE_API void dJointSetAMotorParam (dJointID, int parameter, dReal value);

/**
 * @brief set mode
 * @ingroup joints
 */
ODE_API void dJointSetAMotorMode (dJointID, int mode);

/**
 * @brief Applies torque0 about the AMotor's axis 0, torque1 about the
 * AMotor's axis 1, and torque2 about the AMotor's axis 2.
 * @remarks
 * If the motor has fewer than three axes, the higher torques are ignored.
 * This function is just a wrapper for dBodyAddTorque().
 * @ingroup joints
 */
ODE_API void dJointAddAMotorTorques (dJointID, dReal torque1, dReal torque2, dReal torque3);

/**
 * @brief Set the number of axes that will be controlled by the LMotor.
 * @param num can range from 0 (which effectively deactivates the joint) to 3.
 * @ingroup joints
 */
ODE_API void dJointSetLMotorNumAxes (dJointID, int num);

/**
 * @brief Set the AMotor axes.
 * @param anum selects the axis to change (0,1 or 2).
 * @param rel Each axis can have one of three ``relative orientation'' modes
 * \li 0: The axis is anchored to the global frame.
 * \li 1: The axis is anchored to the first body.
 * \li 2: The axis is anchored to the second body.
 * @remarks The axis vector is always specified in global coordinates
 * regardless of the setting of rel.
 * @ingroup joints
 */
ODE_API void dJointSetLMotorAxis (dJointID, int anum, int rel, dReal x, dReal y, dReal z);

/**
 * @brief set joint parameter
 * @ingroup joints
 */
ODE_API void dJointSetLMotorParam (dJointID, int parameter, dReal value);

/**
 * @ingroup joints
 */
ODE_API void dJointSetPlane2DXParam (dJointID, int parameter, dReal value);

/**
 * @ingroup joints
 */

ODE_API void dJointSetPlane2DYParam (dJointID, int parameter, dReal value);

/**
 * @ingroup joints
 */
ODE_API void dJointSetPlane2DAngleParam (dJointID, int parameter, dReal value);

/**
 * @brief Get the joint anchor point, in world coordinates.
 *
 * This returns the point on body 1. If the joint is perfectly satisfied,
 * this will be the same as the point on body 2.
 */
ODE_API void dJointGetBallAnchor (dJointID, dVector3 result);

/**
 * @brief Get the joint anchor point, in world coordinates.
 *
 * This returns the point on body 2. You can think of a ball and socket
 * joint as trying to keep the result of dJointGetBallAnchor() and
 * dJointGetBallAnchor2() the same.  If the joint is perfectly satisfied,
 * this function will return the same value as dJointGetBallAnchor() to
 * within roundoff errors. dJointGetBallAnchor2() can be used, along with
 * dJointGetBallAnchor(), to see how far the joint has come apart.
 */
ODE_API void dJointGetBallAnchor2 (dJointID, dVector3 result);

/**
 * @brief get joint parameter
 * @ingroup joints
 */
ODE_API dReal dJointGetBallParam (dJointID, int parameter);

/**
 * @brief Get the hinge anchor point, in world coordinates.
 *
 * This returns the point on body 1. If the joint is perfectly satisfied,
 * this will be the same as the point on body 2.
 * @ingroup joints
 */
ODE_API void dJointGetHingeAnchor (dJointID, dVector3 result);

/**
 * @brief Get the joint anchor point, in world coordinates.
 * @return The point on body 2. If the joint is perfectly satisfied,
 * this will return the same value as dJointGetHingeAnchor().
 * If not, this value will be slightly different.
 * This can be used, for example, to see how far the joint has come apart.
 * @ingroup joints
 */
ODE_API void dJointGetHingeAnchor2 (dJointID, dVector3 result);

/**
 * @brief get axis
 * @ingroup joints
 */
ODE_API void dJointGetHingeAxis (dJointID, dVector3 result);

/**
 * @brief get joint parameter
 * @ingroup joints
 */
ODE_API dReal dJointGetHingeParam (dJointID, int parameter);

/**
 * @brief Get the hinge angle.
 *
 * The angle is measured between the two bodies, or between the body and
 * the static environment.
 * The angle will be between -pi..pi.
 * Give the relative rotation with respect to the Hinge axis of Body 1 with
 * respect to Body 2.
 * When the hinge anchor or axis is set, the current position of the attached
 * bodies is examined and that position will be the zero angle.
 * @ingroup joints
 */
ODE_API dReal dJointGetHingeAngle (dJointID);

/**
 * @brief Get the hinge angle time derivative.
 * @ingroup joints
 */
ODE_API dReal dJointGetHingeAngleRate (dJointID);

/**
 * @brief Get the slider linear position (i.e. the slider's extension)
 *
 * When the axis is set, the current position of the attached bodies is
 * examined and that position will be the zero position.

 * The position is the distance, with respect to the zero position,
 * along the slider axis of body 1 with respect to
 * body 2. (A NULL body is replaced by the world).
 * @ingroup joints
 */
ODE_API dReal dJointGetSliderPosition (dJointID);

/**
 * @brief Get the slider linear position's time derivative.
 * @ingroup joints
 */
ODE_API dReal dJointGetSliderPositionRate (dJointID);

/**
 * @brief Get the slider axis
 * @ingroup joints
 */
ODE_API void dJointGetSliderAxis (dJointID, dVector3 result);

/**
 * @brief get joint parameter
 * @ingroup joints
 */
ODE_API dReal dJointGetSliderParam (dJointID, int parameter);

/**
 * @brief Get the joint anchor point, in world coordinates.
 * @return the point on body 1.  If the joint is perfectly satisfied,
 * this will be the same as the point on body 2.
 * @ingroup joints
 */
ODE_API void dJointGetHinge2Anchor (dJointID, dVector3 result);

/**
 * @brief Get the joint anchor point, in world coordinates.
 * This returns the point on body 2. If the joint is perfectly satisfied,
 * this will return the same value as dJointGetHinge2Anchor.
 * If not, this value will be slightly different.
 * This can be used, for example, to see how far the joint has come apart.
 * @ingroup joints
 */
ODE_API void dJointGetHinge2Anchor2 (dJointID, dVector3 result);

/**
 * @brief Get joint axis
 * @ingroup joints
 */
ODE_API void dJointGetHinge2Axis1 (dJointID, dVector3 result);

/**
 * @brief Get joint axis
 * @ingroup joints
 */
ODE_API void dJointGetHinge2Axis2 (dJointID, dVector3 result);

/**
 * @brief get joint parameter
 * @ingroup joints
 */
ODE_API dReal dJointGetHinge2Param (dJointID, int parameter);

/**
 * @brief Get angle
 * @ingroup joints
 */
ODE_API dReal dJointGetHinge2Angle1 (dJointID);

/**
 * @brief Get time derivative of angle
 * @ingroup joints
 */
ODE_API dReal dJointGetHinge2Angle1Rate (dJointID);

/**
 * @brief Get time derivative of angle
 * @ingroup joints
 */
ODE_API dReal dJointGetHinge2Angle2Rate (dJointID);

/**
 * @brief Get the joint anchor point, in world coordinates.
 * @return the point on body 1. If the joint is perfectly satisfied,
 * this will be the same as the point on body 2.
 * @ingroup joints
 */
ODE_API void dJointGetUniversalAnchor (dJointID, dVector3 result);

/**
 * @brief Get the joint anchor point, in world coordinates.
 * @return This returns the point on body 2.
 * @remarks
 * You can think of the ball and socket part of a universal joint as
 * trying to keep the result of dJointGetBallAnchor() and
 * dJointGetBallAnchor2() the same. If the joint is
 * perfectly satisfied, this function will return the same value
 * as dJointGetUniversalAnchor() to within roundoff errors.
 * dJointGetUniversalAnchor2() can be used, along with
 * dJointGetUniversalAnchor(), to see how far the joint has come apart.
 * @ingroup joints
 */
ODE_API void dJointGetUniversalAnchor2 (dJointID, dVector3 result);

/**
 * @brief Get axis
 * @ingroup joints
 */
ODE_API void dJointGetUniversalAxis1 (dJointID, dVector3 result);

/**
 * @brief Get axis
 * @ingroup joints
 */
ODE_API void dJointGetUniversalAxis2 (dJointID, dVector3 result);


/**
 * @brief get joint parameter
 * @ingroup joints
 */
ODE_API dReal dJointGetUniversalParam (dJointID, int parameter);

/**
 * @brief Get both angles at the same time.
 * @ingroup joints
 *
 * @param joint   The universal joint for which we want to calculate the angles
 * @param angle1  The angle between the body1 and the axis 1
 * @param angle2  The angle between the body2 and the axis 2
 *
 * @note This function combine getUniversalAngle1 and getUniversalAngle2 together
 *       and try to avoid redundant calculation
 */
ODE_API void dJointGetUniversalAngles (dJointID, dReal *angle1, dReal *angle2);

/**
 * @brief Get angle
 * @ingroup joints
 */
ODE_API dReal dJointGetUniversalAngle1 (dJointID);

/**
 * @brief Get angle
 * @ingroup joints
 */
ODE_API dReal dJointGetUniversalAngle2 (dJointID);

/**
 * @brief Get time derivative of angle
 * @ingroup joints
 */
ODE_API dReal dJointGetUniversalAngle1Rate (dJointID);

/**
 * @brief Get time derivative of angle
 * @ingroup joints
 */
ODE_API dReal dJointGetUniversalAngle2Rate (dJointID);



/**
 * @brief Get the joint anchor point, in world coordinates.
 * @return the point on body 1. If the joint is perfectly satisfied, 
 * this will be the same as the point on body 2.
 * @ingroup joints
 */
ODE_API void dJointGetPRAnchor (dJointID, dVector3 result);

/**
 * @brief Get the PR linear position (i.e. the prismatic's extension)
 *
 * When the axis is set, the current position of the attached bodies is
 * examined and that position will be the zero position.
 *
 * The position is the "oriented" length between the
 * position = (Prismatic axis) dot_product [(body1 + offset) - (body2 + anchor2)]
 *
 * @ingroup joints
 */
ODE_API dReal dJointGetPRPosition (dJointID);

/**
 * @brief Get the PR linear position's time derivative
 *
 * @ingroup joints
 */
ODE_API dReal dJointGetPRPositionRate (dJointID);


/**
   * @brief Get the PR angular position (i.e. the  twist between the 2 bodies)
   *
   * When the axis is set, the current position of the attached bodies is
   * examined and that position will be the zero position.
   * @ingroup joints
   */
ODE_API dReal dJointGetPRAngle (dJointID);

/**
 * @brief Get the PR angular position's time derivative
 *
 * @ingroup joints
 */
ODE_API dReal dJointGetPRAngleRate (dJointID);


/**
 * @brief Get the prismatic axis
 * @ingroup joints
 */
ODE_API void dJointGetPRAxis1 (dJointID, dVector3 result);

/**
 * @brief Get the Rotoide axis
 * @ingroup joints
 */
ODE_API void dJointGetPRAxis2 (dJointID, dVector3 result);

/**
 * @brief get joint parameter
 * @ingroup joints
 */
ODE_API dReal dJointGetPRParam (dJointID, int parameter);

    
    
  /**
   * @brief Get the joint anchor point, in world coordinates.
   * @return the point on body 1. If the joint is perfectly satisfied,
   * this will be the same as the point on body 2.
   * @ingroup joints
   */
  ODE_API void dJointGetPUAnchor (dJointID, dVector3 result);

  /**
   * @brief Get the PU linear position (i.e. the prismatic's extension)
   *
   * When the axis is set, the current position of the attached bodies is
   * examined and that position will be the zero position.
   *
   * The position is the "oriented" length between the
   * position = (Prismatic axis) dot_product [(body1 + offset) - (body2 + anchor2)]
   *
   * @ingroup joints
   */
  ODE_API dReal dJointGetPUPosition (dJointID);

  /**
   * @brief Get the PR linear position's time derivative
   *
   * @ingroup joints
   */
  ODE_API dReal dJointGetPUPositionRate (dJointID);

  /**
   * @brief Get the first axis of the universal component of the joint
   * @ingroup joints
   */
  ODE_API void dJointGetPUAxis1 (dJointID, dVector3 result);

  /**
   * @brief Get the second axis of the Universal component of the joint
   * @ingroup joints
   */
  ODE_API void dJointGetPUAxis2 (dJointID, dVector3 result);

  /**
   * @brief Get the prismatic axis
   * @ingroup joints
   */
  ODE_API void dJointGetPUAxis3 (dJointID, dVector3 result);

  /**
   * @brief Get the prismatic axis
   * @ingroup joints
   *
   * @note This function was added for convenience it is the same as
   *       dJointGetPUAxis3
   */
  ODE_API void dJointGetPUAxisP (dJointID id, dVector3 result);




  /**
   * @brief Get both angles at the same time.
   * @ingroup joints
   *
   * @param joint   The Prismatic universal joint for which we want to calculate the angles
   * @param angle1  The angle between the body1 and the axis 1
   * @param angle2  The angle between the body2 and the axis 2
   *
   * @note This function combine dJointGetPUAngle1 and dJointGetPUAngle2 together
   *       and try to avoid redundant calculation
   */
  ODE_API void dJointGetPUAngles (dJointID, dReal *angle1, dReal *angle2);

  /**
   * @brief Get angle
   * @ingroup joints
   */
  ODE_API dReal dJointGetPUAngle1 (dJointID);

  /**
   * @brief * @brief Get time derivative of angle1
   *
   * @ingroup joints
   */
  ODE_API dReal dJointGetPUAngle1Rate (dJointID);


  /**
   * @brief Get angle
   * @ingroup joints
   */
  ODE_API dReal dJointGetPUAngle2 (dJointID);

  /**
   * @brief * @brief Get time derivative of angle2
   *
   * @ingroup joints
   */
  ODE_API dReal dJointGetPUAngle2Rate (dJointID);

  /**
   * @brief get joint parameter
   * @ingroup joints
   */
  ODE_API dReal dJointGetPUParam (dJointID, int parameter);





/**
   * @brief Get the Piston linear position (i.e. the piston's extension)
   *
   * When the axis is set, the current position of the attached bodies is
   * examined and that position will be the zero position.
   * @ingroup joints
   */
  ODE_API dReal dJointGetPistonPosition (dJointID);

  /**
   * @brief Get the piston linear position's time derivative.
   * @ingroup joints
   */
  ODE_API dReal dJointGetPistonPositionRate (dJointID);

/**
   * @brief Get the Piston angular position (i.e. the  twist between the 2 bodies)
   *
   * When the axis is set, the current position of the attached bodies is
   * examined and that position will be the zero position.
   * @ingroup joints
   */
  ODE_API dReal dJointGetPistonAngle (dJointID);

  /**
   * @brief Get the piston angular position's time derivative.
   * @ingroup joints
   */
  ODE_API dReal dJointGetPistonAngleRate (dJointID);


  /**
   * @brief Get the joint anchor
   *
   * This returns the point on body 1. If the joint is perfectly satisfied,
   * this will be the same as the point on body 2 in direction perpendicular
   * to the prismatic axis.
   *
   * @ingroup joints
   */
  ODE_API void dJointGetPistonAnchor (dJointID, dVector3 result);

  /**
   * @brief Get the joint anchor w.r.t. body 2
   *
   * This returns the point on body 2. You can think of a Piston
   * joint as trying to keep the result of dJointGetPistonAnchor() and
   * dJointGetPistonAnchor2() the same in the direction perpendicular to the
   * pirsmatic axis. If the joint is perfectly satisfied,
   * this function will return the same value as dJointGetPistonAnchor() to
   * within roundoff errors. dJointGetPistonAnchor2() can be used, along with
   * dJointGetPistonAnchor(), to see how far the joint has come apart.
   *
   * @ingroup joints
   */
  ODE_API void dJointGetPistonAnchor2 (dJointID, dVector3 result);

  /**
   * @brief Get the prismatic axis (This is also the rotoide axis.
   * @ingroup joints
   */
  ODE_API void dJointGetPistonAxis (dJointID, dVector3 result);

  /**
   * @brief get joint parameter
   * @ingroup joints
   */
  ODE_API dReal dJointGetPistonParam (dJointID, int parameter);


  /**
 * @brief Get the number of angular axes that will be controlled by the
 * AMotor.
 * @param num can range from 0 (which effectively deactivates the
 * joint) to 3.
 * This is automatically set to 3 in dAMotorEuler mode.
 * @ingroup joints
 */
ODE_API int dJointGetAMotorNumAxes (dJointID);

/**
 * @brief Get the AMotor axes.
 * @param anum selects the axis to change (0,1 or 2).
 * @param rel Each axis can have one of three ``relative orientation'' modes.
 * \li 0: The axis is anchored to the global frame.
 * \li 1: The axis is anchored to the first body.
 * \li 2: The axis is anchored to the second body.
 * @ingroup joints
 */
ODE_API void dJointGetAMotorAxis (dJointID, int anum, dVector3 result);

/**
 * @brief Get axis
 * @remarks
 * The axis vector is always specified in global coordinates regardless
 * of the setting of rel.
 * There are two GetAMotorAxis functions, one to return the axis and one to
 * return the relative mode.
 *
 * For dAMotorEuler mode:
 * \li	Only axes 0 and 2 need to be set. Axis 1 will be determined
	automatically at each time step.
 * \li	Axes 0 and 2 must be perpendicular to each other.
 * \li	Axis 0 must be anchored to the first body, axis 2 must be anchored
	to the second body.
 * @ingroup joints
 */
ODE_API int dJointGetAMotorAxisRel (dJointID, int anum);

/**
 * @brief Get the current angle for axis.
 * @remarks
 * In dAMotorUser mode this is simply the value that was set with
 * dJointSetAMotorAngle().
 * In dAMotorEuler mode this is the corresponding euler angle.
 * @ingroup joints
 */
ODE_API dReal dJointGetAMotorAngle (dJointID, int anum);

/**
 * @brief Get the current angle rate for axis anum.
 * @remarks
 * In dAMotorUser mode this is always zero, as not enough information is
 * available.
 * In dAMotorEuler mode this is the corresponding euler angle rate.
 * @ingroup joints
 */
ODE_API dReal dJointGetAMotorAngleRate (dJointID, int anum);

/**
 * @brief get joint parameter
 * @ingroup joints
 */
ODE_API dReal dJointGetAMotorParam (dJointID, int parameter);

/**
 * @brief Get the angular motor mode.
 * @param mode must be one of the following constants:
 * \li dAMotorUser The AMotor axes and joint angle settings are entirely
 * controlled by the user.  This is the default mode.
 * \li dAMotorEuler Euler angles are automatically computed.
 * The axis a1 is also automatically computed.
 * The AMotor axes must be set correctly when in this mode,
 * as described below.
 * When this mode is initially set the current relative orientations
 * of the bodies will correspond to all euler angles at zero.
 * @ingroup joints
 */
ODE_API int dJointGetAMotorMode (dJointID);

/**
 * @brief Get nr of axes.
 * @ingroup joints
 */
ODE_API int dJointGetLMotorNumAxes (dJointID);

/**
 * @brief Get axis.
 * @ingroup joints
 */
ODE_API void dJointGetLMotorAxis (dJointID, int anum, dVector3 result);

/**
 * @brief get joint parameter
 * @ingroup joints
 */
ODE_API dReal dJointGetLMotorParam (dJointID, int parameter);

/**
 * @brief get joint parameter
 * @ingroup joints
 */
ODE_API dReal dJointGetFixedParam (dJointID, int parameter);


/**
 * @ingroup joints
 */
ODE_API dJointID dConnectingJoint (dBodyID, dBodyID);

/**
 * @ingroup joints
 */
ODE_API int dConnectingJointList (dBodyID, dBodyID, dJointID*);

/**
 * @brief Utility function
 * @return 1 if the two bodies are connected together by
 * a joint, otherwise return 0.
 * @ingroup joints
 */
ODE_API int dAreConnected (dBodyID, dBodyID);

/**
 * @brief Utility function
 * @return 1 if the two bodies are connected together by
 * a joint that does not have type @arg{joint_type}, otherwise return 0.
 * @param body1 A body to check.
 * @param body2 A body to check.
 * @param joint_type is a dJointTypeXXX constant.
 * This is useful for deciding whether to add contact joints between two bodies:
 * if they are already connected by non-contact joints then it may not be
 * appropriate to add contacts, however it is okay to add more contact between-
 * bodies that already have contacts.
 * @ingroup joints
 */
ODE_API int dAreConnectedExcluding (dBodyID body1, dBodyID body2, int joint_type);


#ifdef __cplusplus
}
#endif

#endif