This file is indexed.

/usr/include/OGRE/OgreCommon.h is in libogre-1.8-dev 1.8.0+dfsg1-7+b1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
/*
-----------------------------------------------------------------------------
This source file is part of OGRE
    (Object-oriented Graphics Rendering Engine)
For the latest info, see http://www.ogre3d.org/

Copyright (c) 2000-2012 Torus Knot Software Ltd

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
-----------------------------------------------------------------------------
*/
#ifndef __Common_H__
#define __Common_H__
// Common stuff

#include "OgreString.h"

#if defined ( OGRE_GCC_VISIBILITY )
#   pragma GCC visibility push(default)
#endif

#include <utility>
#include <sstream>

#if defined ( OGRE_GCC_VISIBILITY )
#   pragma GCC visibility pop
#endif

namespace Ogre {
	/** \addtogroup Core
	*  @{
	*/
	/** \addtogroup General
	*  @{
	*/

	/// Fast general hashing algorithm
	uint32 _OgreExport FastHash (const char * data, int len, uint32 hashSoFar = 0);
	/// Combine hashes with same style as boost::hash_combine
	template <typename T>
	uint32 HashCombine (uint32 hashSoFar, const T& data)
	{
		return FastHash((const char*)&data, sizeof(T), hashSoFar);
	}


    /** Comparison functions used for the depth/stencil buffer operations and 
		others. */
    enum CompareFunction
    {
        CMPF_ALWAYS_FAIL,
        CMPF_ALWAYS_PASS,
        CMPF_LESS,
        CMPF_LESS_EQUAL,
        CMPF_EQUAL,
        CMPF_NOT_EQUAL,
        CMPF_GREATER_EQUAL,
        CMPF_GREATER
    };

    /** High-level filtering options providing shortcuts to settings the
        minification, magnification and mip filters. */
    enum TextureFilterOptions
    {
        /// Equal to: min=FO_POINT, mag=FO_POINT, mip=FO_NONE
        TFO_NONE,
        /// Equal to: min=FO_LINEAR, mag=FO_LINEAR, mip=FO_POINT
        TFO_BILINEAR,
        /// Equal to: min=FO_LINEAR, mag=FO_LINEAR, mip=FO_LINEAR
        TFO_TRILINEAR,
        /// Equal to: min=FO_ANISOTROPIC, max=FO_ANISOTROPIC, mip=FO_LINEAR
		TFO_ANISOTROPIC
    };

    enum FilterType
    {
        /// The filter used when shrinking a texture
        FT_MIN,
        /// The filter used when magnifying a texture
        FT_MAG,
        /// The filter used when determining the mipmap
        FT_MIP
    };
    /** Filtering options for textures / mipmaps. */
    enum FilterOptions
    {
        /// No filtering, used for FILT_MIP to turn off mipmapping
        FO_NONE,
        /// Use the closest pixel
        FO_POINT,
        /// Average of a 2x2 pixel area, denotes bilinear for MIN and MAG, trilinear for MIP
        FO_LINEAR,
        /// Similar to FO_LINEAR, but compensates for the angle of the texture plane
        FO_ANISOTROPIC
    };

    /** Light shading modes. */
    enum ShadeOptions
    {
        SO_FLAT,
        SO_GOURAUD,
        SO_PHONG
    };

    /** Fog modes. */
    enum FogMode
    {
        /// No fog. Duh.
        FOG_NONE,
        /// Fog density increases  exponentially from the camera (fog = 1/e^(distance * density))
        FOG_EXP,
        /// Fog density increases at the square of FOG_EXP, i.e. even quicker (fog = 1/e^(distance * density)^2)
        FOG_EXP2,
        /// Fog density increases linearly between the start and end distances
        FOG_LINEAR
    };

    /** Hardware culling modes based on vertex winding.
        This setting applies to how the hardware API culls triangles it is sent. */
    enum CullingMode
    {
        /// Hardware never culls triangles and renders everything it receives.
        CULL_NONE = 1,
        /// Hardware culls triangles whose vertices are listed clockwise in the view (default).
        CULL_CLOCKWISE = 2,
        /// Hardware culls triangles whose vertices are listed anticlockwise in the view.
        CULL_ANTICLOCKWISE = 3
    };

    /** Manual culling modes based on vertex normals.
        This setting applies to how the software culls triangles before sending them to the 
		hardware API. This culling mode is used by scene managers which choose to implement it -
		normally those which deal with large amounts of fixed world geometry which is often 
		planar (software culling movable variable geometry is expensive). */
    enum ManualCullingMode
    {
        /// No culling so everything is sent to the hardware.
        MANUAL_CULL_NONE = 1,
        /// Cull triangles whose normal is pointing away from the camera (default).
        MANUAL_CULL_BACK = 2,
        /// Cull triangles whose normal is pointing towards the camera.
        MANUAL_CULL_FRONT = 3
    };

    /** Enumerates the wave types usable with the Ogre engine. */
    enum WaveformType
    {
        /// Standard sine wave which smoothly changes from low to high and back again.
        WFT_SINE,
        /// An angular wave with a constant increase / decrease speed with pointed peaks.
        WFT_TRIANGLE,
        /// Half of the time is spent at the min, half at the max with instant transition between.
        WFT_SQUARE,
        /// Gradual steady increase from min to max over the period with an instant return to min at the end.
        WFT_SAWTOOTH,
        /// Gradual steady decrease from max to min over the period, with an instant return to max at the end.
        WFT_INVERSE_SAWTOOTH,
		/// Pulse Width Modulation. Works like WFT_SQUARE, except the high to low transition is controlled by duty cycle. 
		/// With a duty cycle of 50% (0.5) will give the same output as WFT_SQUARE.
		WFT_PWM
    };

    /** The polygon mode to use when rasterising. */
    enum PolygonMode
    {
		/// Only points are rendered.
        PM_POINTS = 1,
		/// Wireframe models are rendered.
        PM_WIREFRAME = 2,
		/// Solid polygons are rendered.
        PM_SOLID = 3
    };

    /** An enumeration of broad shadow techniques */
    enum ShadowTechnique
    {
        /** No shadows */
        SHADOWTYPE_NONE = 0x00,
		/** Mask for additive shadows (not for direct use, use  SHADOWTYPE_ enum instead)
		*/
		SHADOWDETAILTYPE_ADDITIVE = 0x01,
		/** Mask for modulative shadows (not for direct use, use  SHADOWTYPE_ enum instead)
		*/
		SHADOWDETAILTYPE_MODULATIVE = 0x02,
		/** Mask for integrated shadows (not for direct use, use SHADOWTYPE_ enum instead)
		*/
		SHADOWDETAILTYPE_INTEGRATED = 0x04,
		/** Mask for stencil shadows (not for direct use, use  SHADOWTYPE_ enum instead)
		*/
		SHADOWDETAILTYPE_STENCIL = 0x10,
		/** Mask for texture shadows (not for direct use, use  SHADOWTYPE_ enum instead)
		*/
		SHADOWDETAILTYPE_TEXTURE = 0x20,
		
        /** Stencil shadow technique which renders all shadow volumes as
            a modulation after all the non-transparent areas have been 
            rendered. This technique is considerably less fillrate intensive 
            than the additive stencil shadow approach when there are multiple
            lights, but is not an accurate model. 
        */
        SHADOWTYPE_STENCIL_MODULATIVE = 0x12,
        /** Stencil shadow technique which renders each light as a separate
            additive pass to the scene. This technique can be very fillrate
            intensive because it requires at least 2 passes of the entire
            scene, more if there are multiple lights. However, it is a more
            accurate model than the modulative stencil approach and this is
            especially apparent when using coloured lights or bump mapping.
        */
        SHADOWTYPE_STENCIL_ADDITIVE = 0x11,
        /** Texture-based shadow technique which involves a monochrome render-to-texture
            of the shadow caster and a projection of that texture onto the 
            shadow receivers as a modulative pass. 
        */
        SHADOWTYPE_TEXTURE_MODULATIVE = 0x22,
		
        /** Texture-based shadow technique which involves a render-to-texture
            of the shadow caster and a projection of that texture onto the 
            shadow receivers, built up per light as additive passes. 
			This technique can be very fillrate intensive because it requires numLights + 2 
			passes of the entire scene. However, it is a more accurate model than the 
			modulative approach and this is especially apparent when using coloured lights 
			or bump mapping.
        */
        SHADOWTYPE_TEXTURE_ADDITIVE = 0x21,

		/** Texture-based shadow technique which involves a render-to-texture
		of the shadow caster and a projection of that texture on to the shadow
		receivers, with the usage of those shadow textures completely controlled
		by the materials of the receivers.
		This technique is easily the most flexible of all techniques because 
		the material author is in complete control over how the shadows are
		combined with regular rendering. It can perform shadows as accurately
		as SHADOWTYPE_TEXTURE_ADDITIVE but more efficiently because it requires
		less passes. However it also requires more expertise to use, and 
		in almost all cases, shader capable hardware to really use to the full.
		@note The 'additive' part of this mode means that the colour of
		the rendered shadow texture is by default plain black. It does
		not mean it does the adding on your receivers automatically though, how you
		use that result is up to you.
		*/
		SHADOWTYPE_TEXTURE_ADDITIVE_INTEGRATED = 0x25,
		/** Texture-based shadow technique which involves a render-to-texture
			of the shadow caster and a projection of that texture on to the shadow
			receivers, with the usage of those shadow textures completely controlled
			by the materials of the receivers.
			This technique is easily the most flexible of all techniques because 
			the material author is in complete control over how the shadows are
			combined with regular rendering. It can perform shadows as accurately
			as SHADOWTYPE_TEXTURE_ADDITIVE but more efficiently because it requires
			less passes. However it also requires more expertise to use, and 
			in almost all cases, shader capable hardware to really use to the full.
			@note The 'modulative' part of this mode means that the colour of
			the rendered shadow texture is by default the 'shadow colour'. It does
			not mean it modulates on your receivers automatically though, how you
			use that result is up to you.
		*/
		SHADOWTYPE_TEXTURE_MODULATIVE_INTEGRATED = 0x26
    };

    /** An enumeration describing which material properties should track the vertex colours */
    typedef int TrackVertexColourType;
    enum TrackVertexColourEnum {
        TVC_NONE        = 0x0,
        TVC_AMBIENT     = 0x1,        
        TVC_DIFFUSE     = 0x2,
        TVC_SPECULAR    = 0x4,
        TVC_EMISSIVE    = 0x8
    };

    /** Sort mode for billboard-set and particle-system */
    enum SortMode
    {
        /** Sort by direction of the camera */
        SM_DIRECTION,
        /** Sort by distance from the camera */
        SM_DISTANCE
    };

    /** Defines the frame buffer types. */
    enum FrameBufferType {
        FBT_COLOUR  = 0x1,
        FBT_DEPTH   = 0x2,
        FBT_STENCIL = 0x4
    };

	/** Flags for the Instance Manager when calculating ideal number of instances per batch */
	enum InstanceManagerFlags
	{
		/** Forces an amount of instances per batch low enough so that vertices * numInst < 65535
			since usually improves performance. In HW instanced techniques, this flag is ignored
		*/
		IM_USE16BIT		= 0x0001,

		/** The num. of instances is adjusted so that as few pixels as possible are wasted
			in the vertex texture */
		IM_VTFBESTFIT	= 0x0002,

		/** Use a limited number of skeleton animations shared among all instances. 
		Update only that limited amount of animations in the vertex texture.*/
		IM_VTFBONEMATRIXLOOKUP = 0x0004,

		IM_USEBONEDUALQUATERNIONS = 0x0008,

		/** Use one weight per vertex when recommended (i.e. VTF). */
		IM_USEONEWEIGHT = 0x0010,

		/** All techniques are forced to one weight per vertex. */
		IM_FORCEONEWEIGHT = 0x0020,

		IM_USEALL		= IM_USE16BIT|IM_VTFBESTFIT|IM_USEONEWEIGHT
	};
    
	
	/** A hashed vector.
	*/
	template <typename T>
	class HashedVector
	{
	public:
		typedef std::vector<T, STLAllocator<T, GeneralAllocPolicy> > VectorImpl;
	protected:
		VectorImpl mList;
		mutable uint32 mListHash;
		mutable bool mListHashDirty;

		void addToHash(const T& newPtr) const
		{
			mListHash = FastHash((const char*)&newPtr, sizeof(T), mListHash);
		}
		void recalcHash() const
		{
			mListHash = 0;
			for (const_iterator i = mList.begin(); i != mList.end(); ++i)
				addToHash(*i);
			mListHashDirty = false;
			
		}

	public:
		typedef typename VectorImpl::value_type value_type;
		typedef typename VectorImpl::pointer pointer;
		typedef typename VectorImpl::reference reference;
		typedef typename VectorImpl::const_reference const_reference;
		typedef typename VectorImpl::size_type size_type;
		typedef typename VectorImpl::difference_type difference_type;
		typedef typename VectorImpl::iterator iterator;
		typedef typename VectorImpl::const_iterator const_iterator;
		typedef typename VectorImpl::reverse_iterator reverse_iterator;
		typedef typename VectorImpl::const_reverse_iterator const_reverse_iterator;

		void dirtyHash()
		{
			mListHashDirty = true;
		}
		bool isHashDirty() const
		{
			return mListHashDirty;
		}

		iterator begin() 
		{ 
			// we have to assume that hash needs recalculating on non-const
			dirtyHash();
			return mList.begin(); 
		}
		iterator end() { return mList.end(); }
		const_iterator begin() const { return mList.begin(); }
		const_iterator end() const { return mList.end(); }
		reverse_iterator rbegin() 
		{ 
			// we have to assume that hash needs recalculating on non-const
			dirtyHash();
			return mList.rbegin(); 
		}
		reverse_iterator rend() { return mList.rend(); }
		const_reverse_iterator rbegin() const { return mList.rbegin(); }
		const_reverse_iterator rend() const { return mList.rend(); }
		size_type size() const { return mList.size(); }
		size_type max_size() const { return mList.max_size(); }
		size_type capacity() const { return mList.capacity(); }
		bool empty() const { return mList.empty(); }
		reference operator[](size_type n) 
		{ 
			// we have to assume that hash needs recalculating on non-const
			dirtyHash();
			return mList[n]; 
		}
		const_reference operator[](size_type n) const { return mList[n]; }
		reference at(size_type n) 
		{ 
			// we have to assume that hash needs recalculating on non-const
			dirtyHash();
			return mList.const_iterator(n); 
		}
		const_reference at(size_type n) const { return mList.at(n); }
		HashedVector() : mListHash(0), mListHashDirty(false) {}
		HashedVector(size_type n) : mList(n), mListHash(0), mListHashDirty(n > 0) {}
		HashedVector(size_type n, const T& t) : mList(n, t), mListHash(0), mListHashDirty(n > 0) {}
		HashedVector(const HashedVector<T>& rhs) 
			: mList(rhs.mList), mListHash(rhs.mListHash), mListHashDirty(rhs.mListHashDirty) {}

		template <class InputIterator>
		HashedVector(InputIterator a, InputIterator b)
			: mList(a, b), mListHashDirty(false)
		{
			dirtyHash();
		}

		~HashedVector() {}
		HashedVector<T>& operator=(const HashedVector<T>& rhs)
		{
			mList = rhs.mList;
			mListHash = rhs.mListHash;
			mListHashDirty = rhs.mListHashDirty;
			return *this;
		}

		void reserve(size_t t) { mList.reserve(t); }
		reference front() 
		{ 
			// we have to assume that hash needs recalculating on non-const
			dirtyHash();
			return mList.front(); 
		}
		const_reference front() const { return mList.front(); }
		reference back()  
		{ 
			// we have to assume that hash needs recalculating on non-const
			dirtyHash();
			return mList.back(); 
		}
		const_reference back() const { return mList.back(); }
		void push_back(const T& t)
		{ 
			mList.push_back(t);
			// Quick progressive hash add
			if (!isHashDirty())
				addToHash(t);
		}
		void pop_back()
		{
			mList.pop_back();
			dirtyHash();
		}
		void swap(HashedVector<T>& rhs)
		{
			mList.swap(rhs.mList);
			dirtyHash();
		}
		iterator insert(iterator pos, const T& t)
		{
			bool recalc = (pos != end());
			iterator ret = mList.insert(pos, t);
			if (recalc)
				dirtyHash();
			else
				addToHash(t);
			return ret;
		}

		template <class InputIterator>
		void insert(iterator pos,
			InputIterator f, InputIterator l)
		{
			mList.insert(pos, f, l);
			dirtyHash();
		}

		void insert(iterator pos, size_type n, const T& x)
		{
			mList.insert(pos, n, x);
			dirtyHash();
		}

		iterator erase(iterator pos)
		{
			iterator ret = mList.erase(pos);
			dirtyHash();
			return ret;
		}
		iterator erase(iterator first, iterator last)
		{
			iterator ret = mList.erase(first, last);
			dirtyHash();
			return ret;
		}
		void clear()
		{
			mList.clear();
			mListHash = 0;
			mListHashDirty = false;
		}

		void resize(size_type n, const T& t = T())
		{
			bool recalc = false;
			if (n != size())
				recalc = true;

			mList.resize(n, t);
			if (recalc)
				dirtyHash();
		}

		bool operator==(const HashedVector<T>& b)
		{ return mListHash == b.mListHash; }

		bool operator<(const HashedVector<T>& b)
		{ return mListHash < b.mListHash; }


		/// Get the hash value
		uint32 getHash() const 
		{ 
			if (isHashDirty())
				recalcHash();

			return mListHash; 
		}
	public:



	};

	class Light;
	typedef HashedVector<Light*> LightList;



    typedef map<String, bool>::type UnaryOptionList;
    typedef map<String, String>::type BinaryOptionList;

	/// Name / value parameter pair (first = name, second = value)
	typedef map<String, String>::type NameValuePairList;

    /// Alias / Texture name pair (first = alias, second = texture name)
    typedef map<String, String>::type AliasTextureNamePairList;

        template< typename T > struct TRect
        {
          T left, top, right, bottom;
          TRect() : left(0), top(0), right(0), bottom(0) {}
          TRect( T const & l, T const & t, T const & r, T const & b )
            : left( l ), top( t ), right( r ), bottom( b )
          {
          }
          TRect( TRect const & o )
            : left( o.left ), top( o.top ), right( o.right ), bottom( o.bottom )
          {
          }
          TRect & operator=( TRect const & o )
          {
            left = o.left;
            top = o.top;
            right = o.right;
            bottom = o.bottom;
            return *this;
          }
          T width() const
          {
            return right - left;
          }
          T height() const
          {
            return bottom - top;
          }
		  bool isNull() const
		  {
			  return width() == 0 || height() == 0;
		  }
		  void setNull()
		  {
			  left = right = top = bottom = 0;
		  }
		  TRect & merge(const TRect& rhs)
		  {
			  if (isNull())
			  {
				  *this = rhs;
			  }
			  else if (!rhs.isNull())
			  {
				  left = std::min(left, rhs.left);
				  right = std::max(right, rhs.right);
				  top = std::min(top, rhs.top);
				  bottom = std::max(bottom, rhs.bottom);
			  }

			  return *this;

		  }
		  TRect intersect(const TRect& rhs) const
		  {
			  TRect ret;
			  if (isNull() || rhs.isNull())
			  {
				  // empty
				  return ret;
			  }
			  else
			  {
				  ret.left = std::max(left, rhs.left);
				  ret.right = std::min(right, rhs.right);
				  ret.top = std::max(top, rhs.top);
				  ret.bottom = std::min(bottom, rhs.bottom);
			  }

			  if (ret.left > ret.right || ret.top > ret.bottom)
			  {
				  // no intersection, return empty
				  ret.left = ret.top = ret.right = ret.bottom = 0;
			  }

			  return ret;

		  }

        };
		template<typename T>
		std::ostream& operator<<(std::ostream& o, const TRect<T>& r)
		{
			o << "TRect<>(l:" << r.left << ", t:" << r.top << ", r:" << r.right << ", b:" << r.bottom << ")";
			return o;
		}

        /** Structure used to define a rectangle in a 2-D floating point space.
        */
        typedef TRect<float> FloatRect;

		/** Structure used to define a rectangle in a 2-D floating point space, 
			subject to double / single floating point settings.
		*/
		typedef TRect<Real> RealRect;

        /** Structure used to define a rectangle in a 2-D integer space.
        */
        typedef TRect< long > Rect;

        /** Structure used to define a box in a 3-D integer space.
         	Note that the left, top, and front edges are included but the right, 
         	bottom and back ones are not.
         */
        struct Box
        {
            size_t left, top, right, bottom, front, back;
			/// Parameterless constructor for setting the members manually
            Box()
				: left(0), top(0), right(1), bottom(1), front(0), back(1)
            {
            }
            /** Define a box from left, top, right and bottom coordinates
            	This box will have depth one (front=0 and back=1).
            	@param	l	x value of left edge
            	@param	t	y value of top edge
            	@param	r	x value of right edge
            	@param	b	y value of bottom edge
            	@note Note that the left, top, and front edges are included 
 		           	but the right, bottom and back ones are not.
            */
            Box( size_t l, size_t t, size_t r, size_t b ):
                left(l),
                top(t),   
                right(r),
                bottom(b),
                front(0),
                back(1)
            {
          		assert(right >= left && bottom >= top && back >= front);
            }
            /** Define a box from left, top, front, right, bottom and back
            	coordinates.
            	@param	l	x value of left edge
            	@param	t	y value of top edge
            	@param  ff  z value of front edge
            	@param	r	x value of right edge
            	@param	b	y value of bottom edge
            	@param  bb  z value of back edge
            	@note Note that the left, top, and front edges are included 
 		           	but the right, bottom and back ones are not.
            */
            Box( size_t l, size_t t, size_t ff, size_t r, size_t b, size_t bb ):
                left(l),
                top(t),   
                right(r),
                bottom(b),
                front(ff),
                back(bb)
            {
          		assert(right >= left && bottom >= top && back >= front);
            }
            
            /// Return true if the other box is a part of this one
            bool contains(const Box &def) const
            {
            	return (def.left >= left && def.top >= top && def.front >= front &&
					def.right <= right && def.bottom <= bottom && def.back <= back);
            }
            
            /// Get the width of this box
            size_t getWidth() const { return right-left; }
            /// Get the height of this box
            size_t getHeight() const { return bottom-top; }
            /// Get the depth of this box
            size_t getDepth() const { return back-front; }
        };

    
	
	/** Locate command-line options of the unary form '-blah' and of the
        binary form '-blah foo', passing back the index of the next non-option.
    @param numargs, argv The standard parameters passed to the main method
    @param unaryOptList Map of unary options (i.e. those that do not require a parameter).
        Should be pre-populated with, for example '-e' in the key and false in the 
        value. Options which are found will be set to true on return.
    @param binOptList Map of binary options (i.e. those that require a parameter
        e.g. '-e afile.txt').
        Should be pre-populated with, for example '-e' and the default setting. 
        Options which are found will have the value updated.
    */
    int _OgreExport findCommandLineOpts(int numargs, char** argv, UnaryOptionList& unaryOptList, 
        BinaryOptionList& binOptList);

	/// Generic result of clipping
	enum ClipResult
	{
		/// Nothing was clipped
		CLIPPED_NONE = 0,
		/// Partially clipped
		CLIPPED_SOME = 1, 
		/// Everything was clipped away
		CLIPPED_ALL = 2
	};

	/// Render window creation parameters.
	struct RenderWindowDescription
	{
		String				name;
		unsigned int		width;
		unsigned int		height;
		bool				useFullScreen;
		NameValuePairList	miscParams;
	};

	/// Render window creation parameters container.
	typedef vector<RenderWindowDescription>::type RenderWindowDescriptionList;

	/// Render window container.
	typedef vector<RenderWindow*>::type RenderWindowList;

	/// Utility class to generate a sequentially numbered series of names
	class _OgreExport NameGenerator
	{
	protected:
		String mPrefix;
		unsigned long long int mNext;
		OGRE_AUTO_MUTEX
	public:
		NameGenerator(const NameGenerator& rhs)
			: mPrefix(rhs.mPrefix), mNext(rhs.mNext) {}
		
		NameGenerator(const String& prefix) : mPrefix(prefix), mNext(1) {}

		/// Generate a new name
		String generate()
		{
			OGRE_LOCK_AUTO_MUTEX
			std::ostringstream s;
			s << mPrefix << mNext++;
			return s.str();
		}

		/// Reset the internal counter
		void reset()
		{
			OGRE_LOCK_AUTO_MUTEX
			mNext = 1ULL;
		}

		/// Manually set the internal counter (use caution)
		void setNext(unsigned long long int val)
		{
			OGRE_LOCK_AUTO_MUTEX
			mNext = val;
		}

		/// Get the internal counter
		unsigned long long int getNext() const
		{
			// lock even on get because 64-bit may not be atomic read
			OGRE_LOCK_AUTO_MUTEX
			return mNext;
		}




	};

	/** Template class describing a simple pool of items.
	*/
	template <typename T>
	class Pool
	{
	protected:
		typedef typename list<T>::type ItemList;
		ItemList mItems;
		OGRE_AUTO_MUTEX
	public:
		Pool() {} 
		virtual ~Pool() {}

		/** Get the next item from the pool.
		@return pair indicating whether there was a free item, and the item if so
		*/
		virtual std::pair<bool, T> removeItem()
		{
			OGRE_LOCK_AUTO_MUTEX
			std::pair<bool, T> ret;
			if (mItems.empty())
			{
				ret.first = false;
			}
			else
			{
				ret.first = true;
				ret.second = mItems.front();
				mItems.pop_front();
			}
			return ret;
		}

		/** Add a new item to the pool. 
		*/
		virtual void addItem(const T& i)
		{
			OGRE_LOCK_AUTO_MUTEX
			mItems.push_front(i);
		}
		/// Clear the pool
		virtual void clear()
		{
			OGRE_LOCK_AUTO_MUTEX
			mItems.clear();
		}



	};
	/** @} */
	/** @} */
}

#endif