/usr/include/OGRE/OgreAxisAlignedBox.h is in libogre-1.9-dev 1.9.0+dfsg1-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 | /*
-----------------------------------------------------------------------------
This source file is part of OGRE
(Object-oriented Graphics Rendering Engine)
For the latest info, see http://www.ogre3d.org/
Copyright (c) 2000-2013 Torus Knot Software Ltd
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
-----------------------------------------------------------------------------
*/
#ifndef __AxisAlignedBox_H_
#define __AxisAlignedBox_H_
// Precompiler options
#include "OgrePrerequisites.h"
#include "OgreVector3.h"
#include "OgreMatrix4.h"
namespace Ogre {
/** \addtogroup Core
* @{
*/
/** \addtogroup Math
* @{
*/
/** A 3D box aligned with the x/y/z axes.
@remarks
This class represents a simple box which is aligned with the
axes. Internally it only stores 2 points as the extremeties of
the box, one which is the minima of all 3 axes, and the other
which is the maxima of all 3 axes. This class is typically used
for an axis-aligned bounding box (AABB) for collision and
visibility determination.
*/
class _OgreExport AxisAlignedBox
{
public:
enum Extent
{
EXTENT_NULL,
EXTENT_FINITE,
EXTENT_INFINITE
};
protected:
Vector3 mMinimum;
Vector3 mMaximum;
Extent mExtent;
mutable Vector3* mCorners;
public:
/*
1-------2
/| /|
/ | / |
5-------4 |
| 0----|--3
| / | /
|/ |/
6-------7
*/
typedef enum {
FAR_LEFT_BOTTOM = 0,
FAR_LEFT_TOP = 1,
FAR_RIGHT_TOP = 2,
FAR_RIGHT_BOTTOM = 3,
NEAR_RIGHT_BOTTOM = 7,
NEAR_LEFT_BOTTOM = 6,
NEAR_LEFT_TOP = 5,
NEAR_RIGHT_TOP = 4
} CornerEnum;
inline AxisAlignedBox() : mMinimum(Vector3::ZERO), mMaximum(Vector3::UNIT_SCALE), mCorners(0)
{
// Default to a null box
setMinimum( -0.5, -0.5, -0.5 );
setMaximum( 0.5, 0.5, 0.5 );
mExtent = EXTENT_NULL;
}
inline AxisAlignedBox(Extent e) : mMinimum(Vector3::ZERO), mMaximum(Vector3::UNIT_SCALE), mCorners(0)
{
setMinimum( -0.5, -0.5, -0.5 );
setMaximum( 0.5, 0.5, 0.5 );
mExtent = e;
}
inline AxisAlignedBox(const AxisAlignedBox & rkBox) : mMinimum(Vector3::ZERO), mMaximum(Vector3::UNIT_SCALE), mCorners(0)
{
if (rkBox.isNull())
setNull();
else if (rkBox.isInfinite())
setInfinite();
else
setExtents( rkBox.mMinimum, rkBox.mMaximum );
}
inline AxisAlignedBox( const Vector3& min, const Vector3& max ) : mMinimum(Vector3::ZERO), mMaximum(Vector3::UNIT_SCALE), mCorners(0)
{
setExtents( min, max );
}
inline AxisAlignedBox(
Real mx, Real my, Real mz,
Real Mx, Real My, Real Mz ) : mMinimum(Vector3::ZERO), mMaximum(Vector3::UNIT_SCALE), mCorners(0)
{
setExtents( mx, my, mz, Mx, My, Mz );
}
AxisAlignedBox& operator=(const AxisAlignedBox& rhs)
{
// Specifically override to avoid copying mCorners
if (rhs.isNull())
setNull();
else if (rhs.isInfinite())
setInfinite();
else
setExtents(rhs.mMinimum, rhs.mMaximum);
return *this;
}
~AxisAlignedBox()
{
if (mCorners)
OGRE_FREE(mCorners, MEMCATEGORY_SCENE_CONTROL);
}
/** Gets the minimum corner of the box.
*/
inline const Vector3& getMinimum(void) const
{
return mMinimum;
}
/** Gets a modifiable version of the minimum
corner of the box.
*/
inline Vector3& getMinimum(void)
{
return mMinimum;
}
/** Gets the maximum corner of the box.
*/
inline const Vector3& getMaximum(void) const
{
return mMaximum;
}
/** Gets a modifiable version of the maximum
corner of the box.
*/
inline Vector3& getMaximum(void)
{
return mMaximum;
}
/** Sets the minimum corner of the box.
*/
inline void setMinimum( const Vector3& vec )
{
mExtent = EXTENT_FINITE;
mMinimum = vec;
}
inline void setMinimum( Real x, Real y, Real z )
{
mExtent = EXTENT_FINITE;
mMinimum.x = x;
mMinimum.y = y;
mMinimum.z = z;
}
/** Changes one of the components of the minimum corner of the box
used to resize only one dimension of the box
*/
inline void setMinimumX(Real x)
{
mMinimum.x = x;
}
inline void setMinimumY(Real y)
{
mMinimum.y = y;
}
inline void setMinimumZ(Real z)
{
mMinimum.z = z;
}
/** Sets the maximum corner of the box.
*/
inline void setMaximum( const Vector3& vec )
{
mExtent = EXTENT_FINITE;
mMaximum = vec;
}
inline void setMaximum( Real x, Real y, Real z )
{
mExtent = EXTENT_FINITE;
mMaximum.x = x;
mMaximum.y = y;
mMaximum.z = z;
}
/** Changes one of the components of the maximum corner of the box
used to resize only one dimension of the box
*/
inline void setMaximumX( Real x )
{
mMaximum.x = x;
}
inline void setMaximumY( Real y )
{
mMaximum.y = y;
}
inline void setMaximumZ( Real z )
{
mMaximum.z = z;
}
/** Sets both minimum and maximum extents at once.
*/
inline void setExtents( const Vector3& min, const Vector3& max )
{
assert( (min.x <= max.x && min.y <= max.y && min.z <= max.z) &&
"The minimum corner of the box must be less than or equal to maximum corner" );
mExtent = EXTENT_FINITE;
mMinimum = min;
mMaximum = max;
}
inline void setExtents(
Real mx, Real my, Real mz,
Real Mx, Real My, Real Mz )
{
assert( (mx <= Mx && my <= My && mz <= Mz) &&
"The minimum corner of the box must be less than or equal to maximum corner" );
mExtent = EXTENT_FINITE;
mMinimum.x = mx;
mMinimum.y = my;
mMinimum.z = mz;
mMaximum.x = Mx;
mMaximum.y = My;
mMaximum.z = Mz;
}
/** Returns a pointer to an array of 8 corner points, useful for
collision vs. non-aligned objects.
@remarks
If the order of these corners is important, they are as
follows: The 4 points of the minimum Z face (note that
because Ogre uses right-handed coordinates, the minimum Z is
at the 'back' of the box) starting with the minimum point of
all, then anticlockwise around this face (if you are looking
onto the face from outside the box). Then the 4 points of the
maximum Z face, starting with maximum point of all, then
anticlockwise around this face (looking onto the face from
outside the box). Like this:
<pre>
1-------2
/| /|
/ | / |
5-------4 |
| 0----|--3
| / | /
|/ |/
6-------7
</pre>
*/
inline const Vector3* getAllCorners(void) const
{
assert( (mExtent == EXTENT_FINITE) && "Can't get corners of a null or infinite AAB" );
// The order of these items is, using right-handed co-ordinates:
// Minimum Z face, starting with Min(all), then anticlockwise
// around face (looking onto the face)
// Maximum Z face, starting with Max(all), then anticlockwise
// around face (looking onto the face)
// Only for optimization/compatibility.
if (!mCorners)
mCorners = OGRE_ALLOC_T(Vector3, 8, MEMCATEGORY_SCENE_CONTROL);
mCorners[0] = mMinimum;
mCorners[1].x = mMinimum.x; mCorners[1].y = mMaximum.y; mCorners[1].z = mMinimum.z;
mCorners[2].x = mMaximum.x; mCorners[2].y = mMaximum.y; mCorners[2].z = mMinimum.z;
mCorners[3].x = mMaximum.x; mCorners[3].y = mMinimum.y; mCorners[3].z = mMinimum.z;
mCorners[4] = mMaximum;
mCorners[5].x = mMinimum.x; mCorners[5].y = mMaximum.y; mCorners[5].z = mMaximum.z;
mCorners[6].x = mMinimum.x; mCorners[6].y = mMinimum.y; mCorners[6].z = mMaximum.z;
mCorners[7].x = mMaximum.x; mCorners[7].y = mMinimum.y; mCorners[7].z = mMaximum.z;
return mCorners;
}
/** Gets the position of one of the corners
*/
Vector3 getCorner(CornerEnum cornerToGet) const
{
switch(cornerToGet)
{
case FAR_LEFT_BOTTOM:
return mMinimum;
case FAR_LEFT_TOP:
return Vector3(mMinimum.x, mMaximum.y, mMinimum.z);
case FAR_RIGHT_TOP:
return Vector3(mMaximum.x, mMaximum.y, mMinimum.z);
case FAR_RIGHT_BOTTOM:
return Vector3(mMaximum.x, mMinimum.y, mMinimum.z);
case NEAR_RIGHT_BOTTOM:
return Vector3(mMaximum.x, mMinimum.y, mMaximum.z);
case NEAR_LEFT_BOTTOM:
return Vector3(mMinimum.x, mMinimum.y, mMaximum.z);
case NEAR_LEFT_TOP:
return Vector3(mMinimum.x, mMaximum.y, mMaximum.z);
case NEAR_RIGHT_TOP:
return mMaximum;
default:
return Vector3();
}
}
_OgreExport friend std::ostream& operator<<( std::ostream& o, const AxisAlignedBox &aab )
{
switch (aab.mExtent)
{
case EXTENT_NULL:
o << "AxisAlignedBox(null)";
return o;
case EXTENT_FINITE:
o << "AxisAlignedBox(min=" << aab.mMinimum << ", max=" << aab.mMaximum << ")";
return o;
case EXTENT_INFINITE:
o << "AxisAlignedBox(infinite)";
return o;
default: // shut up compiler
assert( false && "Never reached" );
return o;
}
}
/** Merges the passed in box into the current box. The result is the
box which encompasses both.
*/
void merge( const AxisAlignedBox& rhs )
{
// Do nothing if rhs null, or this is infinite
if ((rhs.mExtent == EXTENT_NULL) || (mExtent == EXTENT_INFINITE))
{
return;
}
// Otherwise if rhs is infinite, make this infinite, too
else if (rhs.mExtent == EXTENT_INFINITE)
{
mExtent = EXTENT_INFINITE;
}
// Otherwise if current null, just take rhs
else if (mExtent == EXTENT_NULL)
{
setExtents(rhs.mMinimum, rhs.mMaximum);
}
// Otherwise merge
else
{
Vector3 min = mMinimum;
Vector3 max = mMaximum;
max.makeCeil(rhs.mMaximum);
min.makeFloor(rhs.mMinimum);
setExtents(min, max);
}
}
/** Extends the box to encompass the specified point (if needed).
*/
inline void merge( const Vector3& point )
{
switch (mExtent)
{
case EXTENT_NULL: // if null, use this point
setExtents(point, point);
return;
case EXTENT_FINITE:
mMaximum.makeCeil(point);
mMinimum.makeFloor(point);
return;
case EXTENT_INFINITE: // if infinite, makes no difference
return;
}
assert( false && "Never reached" );
}
/** Transforms the box according to the matrix supplied.
@remarks
By calling this method you get the axis-aligned box which
surrounds the transformed version of this box. Therefore each
corner of the box is transformed by the matrix, then the
extents are mapped back onto the axes to produce another
AABB. Useful when you have a local AABB for an object which
is then transformed.
*/
inline void transform( const Matrix4& matrix )
{
// Do nothing if current null or infinite
if( mExtent != EXTENT_FINITE )
return;
Vector3 oldMin, oldMax, currentCorner;
// Getting the old values so that we can use the existing merge method.
oldMin = mMinimum;
oldMax = mMaximum;
// reset
setNull();
// We sequentially compute the corners in the following order :
// 0, 6, 5, 1, 2, 4 ,7 , 3
// This sequence allows us to only change one member at a time to get at all corners.
// For each one, we transform it using the matrix
// Which gives the resulting point and merge the resulting point.
// First corner
// min min min
currentCorner = oldMin;
merge( matrix * currentCorner );
// min,min,max
currentCorner.z = oldMax.z;
merge( matrix * currentCorner );
// min max max
currentCorner.y = oldMax.y;
merge( matrix * currentCorner );
// min max min
currentCorner.z = oldMin.z;
merge( matrix * currentCorner );
// max max min
currentCorner.x = oldMax.x;
merge( matrix * currentCorner );
// max max max
currentCorner.z = oldMax.z;
merge( matrix * currentCorner );
// max min max
currentCorner.y = oldMin.y;
merge( matrix * currentCorner );
// max min min
currentCorner.z = oldMin.z;
merge( matrix * currentCorner );
}
/** Transforms the box according to the affine matrix supplied.
@remarks
By calling this method you get the axis-aligned box which
surrounds the transformed version of this box. Therefore each
corner of the box is transformed by the matrix, then the
extents are mapped back onto the axes to produce another
AABB. Useful when you have a local AABB for an object which
is then transformed.
@note
The matrix must be an affine matrix. @see Matrix4::isAffine.
*/
void transformAffine(const Matrix4& m)
{
assert(m.isAffine());
// Do nothing if current null or infinite
if ( mExtent != EXTENT_FINITE )
return;
Vector3 centre = getCenter();
Vector3 halfSize = getHalfSize();
Vector3 newCentre = m.transformAffine(centre);
Vector3 newHalfSize(
Math::Abs(m[0][0]) * halfSize.x + Math::Abs(m[0][1]) * halfSize.y + Math::Abs(m[0][2]) * halfSize.z,
Math::Abs(m[1][0]) * halfSize.x + Math::Abs(m[1][1]) * halfSize.y + Math::Abs(m[1][2]) * halfSize.z,
Math::Abs(m[2][0]) * halfSize.x + Math::Abs(m[2][1]) * halfSize.y + Math::Abs(m[2][2]) * halfSize.z);
setExtents(newCentre - newHalfSize, newCentre + newHalfSize);
}
/** Sets the box to a 'null' value i.e. not a box.
*/
inline void setNull()
{
mExtent = EXTENT_NULL;
}
/** Returns true if the box is null i.e. empty.
*/
inline bool isNull(void) const
{
return (mExtent == EXTENT_NULL);
}
/** Returns true if the box is finite.
*/
bool isFinite(void) const
{
return (mExtent == EXTENT_FINITE);
}
/** Sets the box to 'infinite'
*/
inline void setInfinite()
{
mExtent = EXTENT_INFINITE;
}
/** Returns true if the box is infinite.
*/
bool isInfinite(void) const
{
return (mExtent == EXTENT_INFINITE);
}
/** Returns whether or not this box intersects another. */
inline bool intersects(const AxisAlignedBox& b2) const
{
// Early-fail for nulls
if (this->isNull() || b2.isNull())
return false;
// Early-success for infinites
if (this->isInfinite() || b2.isInfinite())
return true;
// Use up to 6 separating planes
if (mMaximum.x < b2.mMinimum.x)
return false;
if (mMaximum.y < b2.mMinimum.y)
return false;
if (mMaximum.z < b2.mMinimum.z)
return false;
if (mMinimum.x > b2.mMaximum.x)
return false;
if (mMinimum.y > b2.mMaximum.y)
return false;
if (mMinimum.z > b2.mMaximum.z)
return false;
// otherwise, must be intersecting
return true;
}
/// Calculate the area of intersection of this box and another
inline AxisAlignedBox intersection(const AxisAlignedBox& b2) const
{
if (this->isNull() || b2.isNull())
{
return AxisAlignedBox();
}
else if (this->isInfinite())
{
return b2;
}
else if (b2.isInfinite())
{
return *this;
}
Vector3 intMin = mMinimum;
Vector3 intMax = mMaximum;
intMin.makeCeil(b2.getMinimum());
intMax.makeFloor(b2.getMaximum());
// Check intersection isn't null
if (intMin.x < intMax.x &&
intMin.y < intMax.y &&
intMin.z < intMax.z)
{
return AxisAlignedBox(intMin, intMax);
}
return AxisAlignedBox();
}
/// Calculate the volume of this box
Real volume(void) const
{
switch (mExtent)
{
case EXTENT_NULL:
return 0.0f;
case EXTENT_FINITE:
{
Vector3 diff = mMaximum - mMinimum;
return diff.x * diff.y * diff.z;
}
case EXTENT_INFINITE:
return Math::POS_INFINITY;
default: // shut up compiler
assert( false && "Never reached" );
return 0.0f;
}
}
/** Scales the AABB by the vector given. */
inline void scale(const Vector3& s)
{
// Do nothing if current null or infinite
if (mExtent != EXTENT_FINITE)
return;
// NB assumes centered on origin
Vector3 min = mMinimum * s;
Vector3 max = mMaximum * s;
setExtents(min, max);
}
/** Tests whether this box intersects a sphere. */
bool intersects(const Sphere& s) const
{
return Math::intersects(s, *this);
}
/** Tests whether this box intersects a plane. */
bool intersects(const Plane& p) const
{
return Math::intersects(p, *this);
}
/** Tests whether the vector point is within this box. */
bool intersects(const Vector3& v) const
{
switch (mExtent)
{
case EXTENT_NULL:
return false;
case EXTENT_FINITE:
return(v.x >= mMinimum.x && v.x <= mMaximum.x &&
v.y >= mMinimum.y && v.y <= mMaximum.y &&
v.z >= mMinimum.z && v.z <= mMaximum.z);
case EXTENT_INFINITE:
return true;
default: // shut up compiler
assert( false && "Never reached" );
return false;
}
}
/// Gets the centre of the box
Vector3 getCenter(void) const
{
assert( (mExtent == EXTENT_FINITE) && "Can't get center of a null or infinite AAB" );
return Vector3(
(mMaximum.x + mMinimum.x) * 0.5f,
(mMaximum.y + mMinimum.y) * 0.5f,
(mMaximum.z + mMinimum.z) * 0.5f);
}
/// Gets the size of the box
Vector3 getSize(void) const
{
switch (mExtent)
{
case EXTENT_NULL:
return Vector3::ZERO;
case EXTENT_FINITE:
return mMaximum - mMinimum;
case EXTENT_INFINITE:
return Vector3(
Math::POS_INFINITY,
Math::POS_INFINITY,
Math::POS_INFINITY);
default: // shut up compiler
assert( false && "Never reached" );
return Vector3::ZERO;
}
}
/// Gets the half-size of the box
Vector3 getHalfSize(void) const
{
switch (mExtent)
{
case EXTENT_NULL:
return Vector3::ZERO;
case EXTENT_FINITE:
return (mMaximum - mMinimum) * 0.5;
case EXTENT_INFINITE:
return Vector3(
Math::POS_INFINITY,
Math::POS_INFINITY,
Math::POS_INFINITY);
default: // shut up compiler
assert( false && "Never reached" );
return Vector3::ZERO;
}
}
/** Tests whether the given point contained by this box.
*/
bool contains(const Vector3& v) const
{
if (isNull())
return false;
if (isInfinite())
return true;
return mMinimum.x <= v.x && v.x <= mMaximum.x &&
mMinimum.y <= v.y && v.y <= mMaximum.y &&
mMinimum.z <= v.z && v.z <= mMaximum.z;
}
/** Returns the squared minimum distance between a given point and any part of the box.
* This is faster than distance since avoiding a squareroot, so use if you can. */
Real squaredDistance(const Vector3& v) const
{
if (this->contains(v))
return 0;
else
{
Vector3 maxDist(0,0,0);
if (v.x < mMinimum.x)
maxDist.x = mMinimum.x - v.x;
else if (v.x > mMaximum.x)
maxDist.x = v.x - mMaximum.x;
if (v.y < mMinimum.y)
maxDist.y = mMinimum.y - v.y;
else if (v.y > mMaximum.y)
maxDist.y = v.y - mMaximum.y;
if (v.z < mMinimum.z)
maxDist.z = mMinimum.z - v.z;
else if (v.z > mMaximum.z)
maxDist.z = v.z - mMaximum.z;
return maxDist.squaredLength();
}
}
/** Returns the minimum distance between a given point and any part of the box. */
Real distance (const Vector3& v) const
{
return Ogre::Math::Sqrt(squaredDistance(v));
}
/** Tests whether another box contained by this box.
*/
bool contains(const AxisAlignedBox& other) const
{
if (other.isNull() || this->isInfinite())
return true;
if (this->isNull() || other.isInfinite())
return false;
return this->mMinimum.x <= other.mMinimum.x &&
this->mMinimum.y <= other.mMinimum.y &&
this->mMinimum.z <= other.mMinimum.z &&
other.mMaximum.x <= this->mMaximum.x &&
other.mMaximum.y <= this->mMaximum.y &&
other.mMaximum.z <= this->mMaximum.z;
}
/** Tests 2 boxes for equality.
*/
bool operator== (const AxisAlignedBox& rhs) const
{
if (this->mExtent != rhs.mExtent)
return false;
if (!this->isFinite())
return true;
return this->mMinimum == rhs.mMinimum &&
this->mMaximum == rhs.mMaximum;
}
/** Tests 2 boxes for inequality.
*/
bool operator!= (const AxisAlignedBox& rhs) const
{
return !(*this == rhs);
}
// special values
static const AxisAlignedBox BOX_NULL;
static const AxisAlignedBox BOX_INFINITE;
};
/** @} */
/** @} */
} // namespace Ogre
#endif
|