/usr/include/OGRE/OgreQuaternion.h is in libogre-1.9-dev 1.9.0+dfsg1-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 | /*
-----------------------------------------------------------------------------
This source file is part of OGRE
(Object-oriented Graphics Rendering Engine)
For the latest info, see http://www.ogre3d.org/
Copyright (c) 2000-2013 Torus Knot Software Ltd
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
-----------------------------------------------------------------------------
*/
// This file is based on material originally from:
// Geometric Tools, LLC
// Copyright (c) 1998-2010
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
#ifndef __Quaternion_H__
#define __Quaternion_H__
#include "OgrePrerequisites.h"
#include "OgreMath.h"
namespace Ogre {
/** \addtogroup Core
* @{
*/
/** \addtogroup Math
* @{
*/
/** Implementation of a Quaternion, i.e. a rotation around an axis.
For more information about Quaternions and the theory behind it, we recommend reading:
http://www.ogre3d.org/tikiwiki/Quaternion+and+Rotation+Primer
http://www.cprogramming.com/tutorial/3d/quaternions.html
http://www.gamedev.net/page/resources/_/reference/programming/math-and-physics/
quaternions/quaternion-powers-r1095
*/
class _OgreExport Quaternion
{
public:
/// Default constructor, initializes to identity rotation (aka 0°)
inline Quaternion ()
: w(1), x(0), y(0), z(0)
{
}
/// Construct from an explicit list of values
inline Quaternion (
Real fW,
Real fX, Real fY, Real fZ)
: w(fW), x(fX), y(fY), z(fZ)
{
}
/// Construct a quaternion from a rotation matrix
inline Quaternion(const Matrix3& rot)
{
this->FromRotationMatrix(rot);
}
/// Construct a quaternion from an angle/axis
inline Quaternion(const Radian& rfAngle, const Vector3& rkAxis)
{
this->FromAngleAxis(rfAngle, rkAxis);
}
/// Construct a quaternion from 3 orthonormal local axes
inline Quaternion(const Vector3& xaxis, const Vector3& yaxis, const Vector3& zaxis)
{
this->FromAxes(xaxis, yaxis, zaxis);
}
/// Construct a quaternion from 3 orthonormal local axes
inline Quaternion(const Vector3* akAxis)
{
this->FromAxes(akAxis);
}
/// Construct a quaternion from 4 manual w/x/y/z values
inline Quaternion(Real* valptr)
{
memcpy(&w, valptr, sizeof(Real)*4);
}
/** Exchange the contents of this quaternion with another.
*/
inline void swap(Quaternion& other)
{
std::swap(w, other.w);
std::swap(x, other.x);
std::swap(y, other.y);
std::swap(z, other.z);
}
/// Array accessor operator
inline Real operator [] ( const size_t i ) const
{
assert( i < 4 );
return *(&w+i);
}
/// Array accessor operator
inline Real& operator [] ( const size_t i )
{
assert( i < 4 );
return *(&w+i);
}
/// Pointer accessor for direct copying
inline Real* ptr()
{
return &w;
}
/// Pointer accessor for direct copying
inline const Real* ptr() const
{
return &w;
}
void FromRotationMatrix (const Matrix3& kRot);
void ToRotationMatrix (Matrix3& kRot) const;
/** Setups the quaternion using the supplied vector, and "roll" around
that vector by the specified radians.
*/
void FromAngleAxis (const Radian& rfAngle, const Vector3& rkAxis);
void ToAngleAxis (Radian& rfAngle, Vector3& rkAxis) const;
inline void ToAngleAxis (Degree& dAngle, Vector3& rkAxis) const {
Radian rAngle;
ToAngleAxis ( rAngle, rkAxis );
dAngle = rAngle;
}
/** Constructs the quaternion using 3 axes, the axes are assumed to be orthonormal
@see FromAxes
*/
void FromAxes (const Vector3* akAxis);
void FromAxes (const Vector3& xAxis, const Vector3& yAxis, const Vector3& zAxis);
/** Gets the 3 orthonormal axes defining the quaternion. @see FromAxes */
void ToAxes (Vector3* akAxis) const;
void ToAxes (Vector3& xAxis, Vector3& yAxis, Vector3& zAxis) const;
/** Returns the X orthonormal axis defining the quaternion. Same as doing
xAxis = Vector3::UNIT_X * this. Also called the local X-axis
*/
Vector3 xAxis(void) const;
/** Returns the Y orthonormal axis defining the quaternion. Same as doing
yAxis = Vector3::UNIT_Y * this. Also called the local Y-axis
*/
Vector3 yAxis(void) const;
/** Returns the Z orthonormal axis defining the quaternion. Same as doing
zAxis = Vector3::UNIT_Z * this. Also called the local Z-axis
*/
Vector3 zAxis(void) const;
inline Quaternion& operator= (const Quaternion& rkQ)
{
w = rkQ.w;
x = rkQ.x;
y = rkQ.y;
z = rkQ.z;
return *this;
}
Quaternion operator+ (const Quaternion& rkQ) const;
Quaternion operator- (const Quaternion& rkQ) const;
Quaternion operator* (const Quaternion& rkQ) const;
Quaternion operator* (Real fScalar) const;
_OgreExport friend Quaternion operator* (Real fScalar,
const Quaternion& rkQ);
Quaternion operator- () const;
inline bool operator== (const Quaternion& rhs) const
{
return (rhs.x == x) && (rhs.y == y) &&
(rhs.z == z) && (rhs.w == w);
}
inline bool operator!= (const Quaternion& rhs) const
{
return !operator==(rhs);
}
// functions of a quaternion
/// Returns the dot product of the quaternion
Real Dot (const Quaternion& rkQ) const;
/* Returns the normal length of this quaternion.
@note This does <b>not</b> alter any values.
*/
Real Norm () const;
/// Normalises this quaternion, and returns the previous length
Real normalise(void);
Quaternion Inverse () const; /// Apply to non-zero quaternion
Quaternion UnitInverse () const; /// Apply to unit-length quaternion
Quaternion Exp () const;
Quaternion Log () const;
/// Rotation of a vector by a quaternion
Vector3 operator* (const Vector3& rkVector) const;
/** Calculate the local roll element of this quaternion.
@param reprojectAxis By default the method returns the 'intuitive' result
that is, if you projected the local Y of the quaternion onto the X and
Y axes, the angle between them is returned. If set to false though, the
result is the actual yaw that will be used to implement the quaternion,
which is the shortest possible path to get to the same orientation and
may involve less axial rotation. The co-domain of the returned value is
from -180 to 180 degrees.
*/
Radian getRoll(bool reprojectAxis = true) const;
/** Calculate the local pitch element of this quaternion
@param reprojectAxis By default the method returns the 'intuitive' result
that is, if you projected the local Z of the quaternion onto the X and
Y axes, the angle between them is returned. If set to true though, the
result is the actual yaw that will be used to implement the quaternion,
which is the shortest possible path to get to the same orientation and
may involve less axial rotation. The co-domain of the returned value is
from -180 to 180 degrees.
*/
Radian getPitch(bool reprojectAxis = true) const;
/** Calculate the local yaw element of this quaternion
@param reprojectAxis By default the method returns the 'intuitive' result
that is, if you projected the local Y of the quaternion onto the X and
Z axes, the angle between them is returned. If set to true though, the
result is the actual yaw that will be used to implement the quaternion,
which is the shortest possible path to get to the same orientation and
may involve less axial rotation. The co-domain of the returned value is
from -180 to 180 degrees.
*/
Radian getYaw(bool reprojectAxis = true) const;
/// Equality with tolerance (tolerance is max angle difference)
bool equals(const Quaternion& rhs, const Radian& tolerance) const;
/** Performs Spherical linear interpolation between two quaternions, and returns the result.
Slerp ( 0.0f, A, B ) = A
Slerp ( 1.0f, A, B ) = B
@return Interpolated quaternion
@remarks
Slerp has the proprieties of performing the interpolation at constant
velocity, and being torque-minimal (unless shortestPath=false).
However, it's NOT commutative, which means
Slerp ( 0.75f, A, B ) != Slerp ( 0.25f, B, A );
therefore be careful if your code relies in the order of the operands.
This is specially important in IK animation.
*/
static Quaternion Slerp (Real fT, const Quaternion& rkP,
const Quaternion& rkQ, bool shortestPath = false);
/** @see Slerp. It adds extra "spins" (i.e. rotates several times) specified
by parameter 'iExtraSpins' while interpolating before arriving to the
final values
*/
static Quaternion SlerpExtraSpins (Real fT,
const Quaternion& rkP, const Quaternion& rkQ,
int iExtraSpins);
/// Setup for spherical quadratic interpolation
static void Intermediate (const Quaternion& rkQ0,
const Quaternion& rkQ1, const Quaternion& rkQ2,
Quaternion& rka, Quaternion& rkB);
/// Spherical quadratic interpolation
static Quaternion Squad (Real fT, const Quaternion& rkP,
const Quaternion& rkA, const Quaternion& rkB,
const Quaternion& rkQ, bool shortestPath = false);
/** Performs Normalised linear interpolation between two quaternions, and returns the result.
nlerp ( 0.0f, A, B ) = A
nlerp ( 1.0f, A, B ) = B
@remarks
Nlerp is faster than Slerp.
Nlerp has the proprieties of being commutative (@see Slerp;
commutativity is desired in certain places, like IK animation), and
being torque-minimal (unless shortestPath=false). However, it's performing
the interpolation at non-constant velocity; sometimes this is desired,
sometimes it is not. Having a non-constant velocity can produce a more
natural rotation feeling without the need of tweaking the weights; however
if your scene relies on the timing of the rotation or assumes it will point
at a specific angle at a specific weight value, Slerp is a better choice.
*/
static Quaternion nlerp(Real fT, const Quaternion& rkP,
const Quaternion& rkQ, bool shortestPath = false);
/// Cutoff for sine near zero
static const Real msEpsilon;
// special values
static const Quaternion ZERO;
static const Quaternion IDENTITY;
Real w, x, y, z;
/// Check whether this quaternion contains valid values
inline bool isNaN() const
{
return Math::isNaN(x) || Math::isNaN(y) || Math::isNaN(z) || Math::isNaN(w);
}
/** Function for writing to a stream. Outputs "Quaternion(w, x, y, z)" with w,x,y,z
being the member values of the quaternion.
*/
inline _OgreExport friend std::ostream& operator <<
( std::ostream& o, const Quaternion& q )
{
o << "Quaternion(" << q.w << ", " << q.x << ", " << q.y << ", " << q.z << ")";
return o;
}
};
/** @} */
/** @} */
}
#endif
|