This file is indexed.

/usr/include/OGRE/asm_math.h is in libogre-1.9-dev 1.9.0+dfsg1-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
#ifndef __asm_math_H__
#define __asm_math_H__

#include "OgrePrerequisites.h"
#include "OgrePlatformInformation.h"

#if  OGRE_COMPILER == OGRE_COMPILER_MSVC
#  pragma warning (push)
// disable "instruction may be inaccurate on some Pentiums"
#  pragma warning (disable : 4725)
#endif
namespace Ogre
{

/*=============================================================================
 ASM math routines posted by davepermen et al on flipcode forums
=============================================================================*/
const float pi = 4.0f * atan( 1.0f );
const float half_pi = 0.5f * pi;

/*=============================================================================
	NO EXPLICIT RETURN REQUIRED FROM THESE METHODS!! 
=============================================================================*/
#if  OGRE_COMPILER == OGRE_COMPILER_MSVC && OGRE_ARCH_TYPE == OGRE_ARCHITECTURE_32 && OGRE_CPU == OGRE_CPU_X86
#	pragma warning( push )
#	pragma warning( disable: 4035 ) 
#endif

float asm_arccos( float r ) {
    // return half_pi + arctan( r / -sqr( 1.f - r * r ) );
	
#if  OGRE_COMPILER == OGRE_COMPILER_MSVC &&  OGRE_ARCH_TYPE == OGRE_ARCHITECTURE_32 && OGRE_CPU == OGRE_CPU_X86

    float asm_one = 1.f;
    float asm_half_pi = half_pi;
    __asm {
        fld r // r0 = r
        fld r // r1 = r0, r0 = r
        fmul r // r0 = r0 * r
        fsubr asm_one // r0 = r0 - 1.f
        fsqrt // r0 = sqrtf( r0 )
        fchs // r0 = - r0
        fdiv // r0 = r1 / r0
        fld1 // {{ r0 = atan( r0 )
        fpatan // }}
        fadd asm_half_pi // r0 = r0 + pi / 2
    } // returns r0

#else

	return float( acos( r ) );

#endif
}

float asm_arcsin( float r ) {
    // return arctan( r / sqr( 1.f - r * r ) );

#if  OGRE_COMPILER == OGRE_COMPILER_MSVC &&  OGRE_ARCH_TYPE == OGRE_ARCHITECTURE_32 && OGRE_CPU == OGRE_CPU_X86

    const float asm_one = 1.f;
    __asm {
        fld r // r0 = r
        fld r // r1 = r0, r0 = r
        fmul r // r0 = r0 * r
        fsubr asm_one // r0 = r0 - 1.f
        fsqrt // r0 = sqrtf( r0 )
        fdiv // r0 = r1 / r0
        fld1 // {{ r0 = atan( r0 )
        fpatan // }}
    } // returns r0

#else

	return float( asin( r ) );

#endif

}

float asm_arctan( float r ) {

#if  OGRE_COMPILER == OGRE_COMPILER_MSVC &&  OGRE_ARCH_TYPE == OGRE_ARCHITECTURE_32 && OGRE_CPU == OGRE_CPU_X86

    __asm {
        fld r // r0 = r
        fld1 // {{ r0 = atan( r0 )
        fpatan // }}
    } // returns r0

#else

	return float( atan( r ) );

#endif

}

float asm_sin( float r ) {

#if  OGRE_COMPILER == OGRE_COMPILER_MSVC &&  OGRE_ARCH_TYPE == OGRE_ARCHITECTURE_32 && OGRE_CPU == OGRE_CPU_X86

    __asm {
        fld r // r0 = r
        fsin // r0 = sinf( r0 )
    } // returns r0

#else

	return sin( r );

#endif

}

float asm_cos( float r ) {

#if  OGRE_COMPILER == OGRE_COMPILER_MSVC &&  OGRE_ARCH_TYPE == OGRE_ARCHITECTURE_32 && OGRE_CPU == OGRE_CPU_X86

    __asm {
        fld r // r0 = r
        fcos // r0 = cosf( r0 )
    } // returns r0

#else
	
	return cos( r );

#endif
}

float asm_tan( float r ) {

#if  OGRE_COMPILER == OGRE_COMPILER_MSVC &&  OGRE_ARCH_TYPE == OGRE_ARCHITECTURE_32 && OGRE_CPU == OGRE_CPU_X86

    // return sin( r ) / cos( r );
    __asm {
        fld r // r0 = r
        fsin // r0 = sinf( r0 )
        fld r // r1 = r0, r0 = r
        fcos // r0 = cosf( r0 )
        fdiv // r0 = r1 / r0
    } // returns r0

#else
	
	return tan( r );

#endif
}

// returns a for a * a = r
float asm_sqrt( float r )
{
#if  OGRE_COMPILER == OGRE_COMPILER_MSVC &&  OGRE_ARCH_TYPE == OGRE_ARCHITECTURE_32 && OGRE_CPU == OGRE_CPU_X86

    __asm {
        fld r // r0 = r
        fsqrt // r0 = sqrtf( r0 )
    } // returns r0

#else

	return sqrt( r );

#endif
}

// returns 1 / a for a * a = r
// -- Use this for Vector normalisation!!!
float asm_rsq( float r )
{
#if  OGRE_COMPILER == OGRE_COMPILER_MSVC &&  OGRE_ARCH_TYPE == OGRE_ARCHITECTURE_32 && OGRE_CPU == OGRE_CPU_X86

    __asm {
        fld1 // r0 = 1.f
        fld r // r1 = r0, r0 = r
        fsqrt // r0 = sqrtf( r0 )
        fdiv // r0 = r1 / r0
    } // returns r0

#else

	return 1. / sqrt( r );

#endif
}

// returns 1 / a for a * a = r
// Another version
float apx_rsq( float r ) {

#if  OGRE_COMPILER == OGRE_COMPILER_MSVC &&  OGRE_ARCH_TYPE == OGRE_ARCHITECTURE_32 && OGRE_CPU == OGRE_CPU_X86

    const float asm_dot5 = 0.5f;
    const float asm_1dot5 = 1.5f;

    __asm {
        fld r // r0 = r
        fmul asm_dot5 // r0 = r0 * .5f
        mov eax, r // eax = r
        shr eax, 0x1 // eax = eax >> 1
        neg eax // eax = -eax
        add eax, 0x5F400000 // eax = eax & MAGICAL NUMBER
        mov r, eax // r = eax
        fmul r // r0 = r0 * r
        fmul r // r0 = r0 * r
        fsubr asm_1dot5 // r0 = 1.5f - r0
        fmul r // r0 = r0 * r
    } // returns r0

#else

	return 1. / sqrt( r );

#endif
}

/* very MS-specific, commented out for now
   Finally the best InvSqrt implementation?
   Use for vector normalisation instead of 1/length() * x,y,z
*/
#if  OGRE_COMPILER == OGRE_COMPILER_MSVC &&  OGRE_ARCH_TYPE == OGRE_ARCHITECTURE_32 && OGRE_CPU == OGRE_CPU_X86

__declspec(naked) float __fastcall InvSqrt(float fValue)
{
    __asm
    {
        mov        eax, 0be6eb508h
        mov        dword ptr[esp-12],03fc00000h
        sub        eax, dword ptr[esp + 4]
        sub        dword ptr[esp+4], 800000h
        shr        eax, 1
        mov        dword ptr[esp -  8], eax

        fld        dword ptr[esp -  8]
        fmul    st, st
        fld        dword ptr[esp -  8]
        fxch    st(1)
        fmul    dword ptr[esp +  4]
        fld        dword ptr[esp - 12]
        fld        st(0)
        fsub    st,st(2)

        fld        st(1)
        fxch    st(1)
        fmul    st(3),st
        fmul    st(3),st
        fmulp    st(4),st
        fsub    st,st(2)

        fmul    st(2),st
        fmul    st(3),st
        fmulp    st(2),st
        fxch    st(1)
        fsubp    st(1),st

        fmulp    st(1), st
        ret 4
    }
}

#endif

// returns a random number
FORCEINLINE float asm_rand()
{

#if  OGRE_COMPILER == OGRE_COMPILER_MSVC &&  OGRE_ARCH_TYPE == OGRE_ARCHITECTURE_32 && OGRE_CPU == OGRE_CPU_X86
  #if 0
    #if OGRE_COMP_VER >= 1300

	static unsigned __int64 q = time( NULL );

	_asm {
		movq mm0, q

		// do the magic MMX thing
		pshufw mm1, mm0, 0x1E
		paddd mm0, mm1

		// move to integer memory location and free MMX
		movq q, mm0
		emms
	}

	return float( q );
    #endif
  #else
    // VC6 does not support pshufw
    return float( rand() );
  #endif
#else
    // GCC etc

	return float( rand() );

#endif
}

// returns the maximum random number
FORCEINLINE float asm_rand_max()
{

#if  OGRE_COMPILER == OGRE_COMPILER_MSVC &&  OGRE_ARCH_TYPE == OGRE_ARCHITECTURE_32 && OGRE_CPU == OGRE_CPU_X86
  #if 0
    #if OGRE_COMP_VER >= 1300

	return (std::numeric_limits< unsigned __int64 >::max)();
	return 9223372036854775807.0f;
    #endif
  #else
    // VC6 does not support unsigned __int64
    return float( RAND_MAX );
  #endif

#else
    // GCC etc
	return float( RAND_MAX );

#endif
}

// returns log2( r ) / log2( e )
float asm_ln( float r ) {    

#if  OGRE_COMPILER == OGRE_COMPILER_MSVC &&  OGRE_ARCH_TYPE == OGRE_ARCHITECTURE_32 && OGRE_CPU == OGRE_CPU_X86

    const float asm_1_div_log2_e = .693147180559f;
    const float asm_neg1_div_3 = -.33333333333333333333333333333f;
    const float asm_neg2_div_3 = -.66666666666666666666666666667f;
    const float asm_2 = 2.f;

    int log_2 = 0;

    __asm {
        // log_2 = ( ( r >> 0x17 ) & 0xFF ) - 0x80;
        mov eax, r
        sar eax, 0x17
        and eax, 0xFF
        sub eax, 0x80
        mov log_2, eax

        // r = ( r & 0x807fffff ) + 0x3f800000;
        mov ebx, r
        and ebx, 0x807FFFFF
        add ebx, 0x3F800000
        mov r, ebx

        // r = ( asm_neg1_div_3 * r + asm_2 ) * r + asm_neg2_div_3;   // (1)
        fld r
        fmul asm_neg1_div_3
        fadd asm_2
        fmul r
        fadd asm_neg2_div_3
        fild log_2
        fadd
        fmul asm_1_div_log2_e
    }

#else

	return log( r );

#endif
}

#if  OGRE_COMPILER == OGRE_COMPILER_MSVC &&  OGRE_ARCH_TYPE == OGRE_ARCHITECTURE_32 && OGRE_CPU == OGRE_CPU_X86
#	pragma warning( pop )
#endif
} // namespace

#if  OGRE_COMPILER == OGRE_COMPILER_MSVC
#  pragma warning (pop)
#endif

#endif