/usr/include/ompl/base/ScopedState.h is in libompl-dev 0.14.2+dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 | /*********************************************************************
* Software License Agreement (BSD License)
*
* Copyright (c) 2010, Rice University
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the Rice University nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*********************************************************************/
/* Author: Ioan Sucan */
#ifndef OMPL_BASE_SCOPED_STATE_
#define OMPL_BASE_SCOPED_STATE_
#include "ompl/base/SpaceInformation.h"
#include <boost/concept_check.hpp>
#include <iostream>
namespace ompl
{
namespace base
{
/** \brief Definition of a scoped state.
This class allocates a state of a desired type using the
allocation mechanism of the corresponding state space.
The state is then freed when the instance goes out of
scope using the corresponding free mechanism. */
template<class T = StateSpace>
class ScopedState
{
/** \brief Make sure the type we are allocating is indeed from a state space */
BOOST_CONCEPT_ASSERT((boost::Convertible<T*, StateSpace*>));
/** \brief Make sure the type we are allocating is indeed a state */
BOOST_CONCEPT_ASSERT((boost::Convertible<typename T::StateType*, State*>));
public:
/** \brief The type of the contained state */
typedef typename T::StateType StateType;
/** \brief Given the space that we are working with,
allocate a state from the corresponding
state space. */
explicit
ScopedState(const SpaceInformationPtr &si) : space_(si->getStateSpace())
{
State *s = space_->allocState();
// ideally, this should be a dynamic_cast and we
// should throw an exception in case of
// failure. However, RTTI may not be available across
// shared library boundaries, so we do not use it
state_ = static_cast<StateType*>(s);
}
/** \brief Given the state space that we are working with,
allocate a state. */
explicit
ScopedState(const StateSpacePtr &space) : space_(space)
{
State *s = space_->allocState();
// ideally, this should be a dynamic_cast and we
// should throw an exception in case of
// failure. However, RTTI may not be available across
// shared library boundaries, so we do not use it
state_ = static_cast<StateType*>(s);
}
/** \brief Copy constructor */
ScopedState(const ScopedState<T> &other) : space_(other.getSpace())
{
State *s = space_->allocState();
state_ = static_cast<StateType*>(s);
space_->copyState(s, static_cast<const State*>(other.get()));
}
/** \brief Copy constructor that allows instantiation from states of other type */
template<class O>
ScopedState(const ScopedState<O> &other) : space_(other.getSpace())
{
BOOST_CONCEPT_ASSERT((boost::Convertible<O*, StateSpace*>));
BOOST_CONCEPT_ASSERT((boost::Convertible<typename O::StateType*, State*>));
// ideally, we should use a dynamic_cast and throw an
// exception in case other.get() does not cast to
// const StateType*. However, RTTI may not be
// available across shared library boundaries, so we
// do not use it
State *s = space_->allocState();
state_ = static_cast<StateType*>(s);
space_->copyState(s, static_cast<const State*>(other.get()));
}
/** \brief Given the state space that we are working with,
allocate a state and fill that state with a given value. */
ScopedState(const StateSpacePtr &space, const State *state) : space_(space)
{
State *s = space_->allocState();
space_->copyState(s, state);
// ideally, this should be a dynamic_cast and we
// should throw an exception in case of
// failure. However, RTTI may not be available across
// shared library boundaries, so we do not use it
state_ = static_cast<StateType*>(s);
}
/** \brief Free the memory of the internally allocated state */
~ScopedState(void)
{
space_->freeState(state_);
}
/** \brief Get the state space that the state corresponds to */
const StateSpacePtr& getSpace(void) const
{
return space_;
}
/** \brief Assignment operator */
ScopedState<T>& operator=(const ScopedState<T> &other)
{
if (&other != this)
{
space_->freeState(state_);
space_ = other.getSpace();
State *s = space_->allocState();
state_ = static_cast<StateType*>(s);
space_->copyState(s, static_cast<const State*>(other.get()));
}
return *this;
}
/** \brief Assignment operator */
ScopedState<T>& operator=(const State *other)
{
if (other != static_cast<State*>(state_))
{
// ideally, we should use a dynamic_cast and throw an
// exception in case other does not cast to
// const StateType*. However, RTTI may not be
// available across shared library boundaries, so we
// do not use it
space_->copyState(static_cast<State*>(state_), other);
}
return *this;
}
/** \brief Assignment operator */
ScopedState<T>& operator=(const State &other)
{
if (&other != static_cast<State*>(state_))
{
// ideally, we should use a dynamic_cast and throw an
// exception in case &other does not cast to
// const StateType*. However, RTTI may not be
// available across shared library boundaries, so we
// do not use it
space_->copyState(static_cast<State*>(state_), &other);
}
return *this;
}
/** \brief Assignment operator that allows conversion of states */
template<class O>
ScopedState<T>& operator=(const ScopedState<O> &other)
{
BOOST_CONCEPT_ASSERT((boost::Convertible<O*, StateSpace*>));
BOOST_CONCEPT_ASSERT((boost::Convertible<typename O::StateType*, State*>));
// ideally, we should use a dynamic_cast and throw an
// exception in case other.get() does not cast to
// const StateType*. However, RTTI may not be
// available across shared library boundaries, so we
// do not use it
if (reinterpret_cast<const void*>(&other) != reinterpret_cast<const void*>(this))
{
space_->freeState(state_);
space_ = other.getSpace();
State *s = space_->allocState();
state_ = static_cast<StateType*>(s);
space_->copyState(s, static_cast<const State*>(other.get()));
}
return *this;
}
/** \brief Partial assignment operator. Only sets the double values of the state to specified real values */
ScopedState<T>& operator=(const std::vector<double> &reals)
{
for (unsigned int i = 0 ; i < reals.size() ; ++i)
if (double *va = space_->getValueAddressAtIndex(state_, i))
*va = reals[i];
else
break;
return *this;
}
/** \brief Partial assignment operator. Only sets the double values of the state to a fixed value */
ScopedState<T>& operator=(const double value)
{
unsigned int index = 0;
while (double *va = space_->getValueAddressAtIndex(state_, index++))
*va = value;
return *this;
}
/** \brief Checks equality of two states */
template<class O>
bool operator==(const ScopedState<O> &other) const
{
BOOST_CONCEPT_ASSERT((boost::Convertible<O*, StateSpace*>));
BOOST_CONCEPT_ASSERT((boost::Convertible<typename O::StateType*, State*>));
// ideally, we should use a dynamic_cast and throw an
// exception in case other.get() does not cast to
// const StateType*. However, RTTI may not be
// available across shared library boundaries, so we
// do not use it
return space_->equalStates(static_cast<const State*>(state_), static_cast<const State*>(other.get()));
}
/** \brief Checks equality of two states */
template<class O>
bool operator!=(const ScopedState<O> &other) const
{
return !(*this == other);
}
/** \brief Extract a state that corresponds to the
components in state space \e s. Those components will
have the same value as the current state (only the
ones included in the current state; others will be
uninitialised). Note: a new state is constructed and data is copied. */
const ScopedState<> operator[](const StateSpacePtr &s) const;
/** \brief Access the \e index<sup>th</sup> double value this state contains. */
double& operator[](const unsigned int index)
{
double *val = space_->getValueAddressAtIndex(state_, index);
if (!val)
throw Exception("Index out of bounds");
return *val;
}
/** \brief Access the \e index<sup>th</sup> double value this state contains. */
double operator[](const unsigned int index) const
{
const double *val = space_->getValueAddressAtIndex(state_, index);
if (!val)
throw Exception("Index out of bounds");
return *val;
}
/** \brief Access a double value from this state contains using its name. */
double& operator[](const std::string &name)
{
const std::map<std::string, StateSpace::ValueLocation> &vm = space_->getValueLocationsByName();
std::map<std::string, StateSpace::ValueLocation>::const_iterator it = vm.find(name);
if (it != vm.end())
{
double *val = space_->getValueAddressAtLocation(state_, it->second);
if (val)
return *val;
}
throw Exception("Name '" + name + "' not known");
}
/** \brief Access a double value from this state contains using its name. */
double operator[](const std::string &name) const
{
const std::map<std::string, StateSpace::ValueLocation> &vm = space_->getValueLocationsByName();
std::map<std::string, StateSpace::ValueLocation>::const_iterator it = vm.find(name);
if (it != vm.end())
{
const double *val = space_->getValueAddressAtLocation(state_, it->second);
if (val)
return *val;
}
throw Exception("Name '" + name + "' not known");
}
/** \brief Compute the distance to another state. */
template<class O>
double distance(const ScopedState<O> &other) const
{
BOOST_CONCEPT_ASSERT((boost::Convertible<O*, StateSpace*>));
BOOST_CONCEPT_ASSERT((boost::Convertible<typename O::StateType*, State*>));
return distance(other.get());
}
/** \brief Compute the distance to another state. */
double distance(const State *state) const
{
return space_->distance(static_cast<const State*>(state_), state);
}
/** \brief Set this state to a random value (uniform) */
void random(void)
{
if (!sampler_)
sampler_ = space_->allocStateSampler();
sampler_->sampleUniform(state_);
}
/** \brief Enforce the bounds on the maintained state */
void enforceBounds(void)
{
space_->enforceBounds(state_);
}
/** \brief Check if the maintained state satisfies bounds */
bool satisfiesBounds(void) const
{
return space_->satisfiesBounds(state_);
}
/** \brief Return the real values corresponding to this
state. If a conversion is not possible, an exception
is thrown.*/
std::vector<double> reals(void) const
{
std::vector<double> r;
unsigned int index = 0;
while (double *va = space_->getValueAddressAtIndex(state_, index++))
r.push_back(*va);
return r;
}
/** \brief Print this state to a stream */
void print(std::ostream &out = std::cout) const
{
space_->printState(state_, out);
}
/** \brief De-references to the contained state */
StateType& operator*(void)
{
return *state_;
}
/** \brief De-references to the contained state */
const StateType& operator*(void) const
{
return *state_;
}
/** \brief Returns a pointer to the contained state */
StateType* operator->(void)
{
return state_;
}
/** \brief Returns a pointer to the contained state */
const StateType* operator->(void) const
{
return state_;
}
/** \brief Returns a pointer to the contained state */
StateType* get(void)
{
return state_;
}
/** \brief Returns a pointer to the contained state */
const StateType* get(void) const
{
return state_;
}
/** \brief Returns a pointer to the contained state (used for Python bindings) */
StateType* operator()(void) const
{
return state_;
}
private:
StateSpacePtr space_;
StateSamplerPtr sampler_;
StateType *state_;
};
/** \addtogroup stateAndSpaceOperators Operators for States and State Spaces
These operators are intended to simplify code that
manipulates states and state spaces. They rely on the fact
that state spaces have unique names. Here are some examples
for using these operators:
\code
// Assume X, Y, Z, W are state space instances, none of
// which inherits from ompl::base::CompoundStateSpace.
// Denote a compound state space as C[...], where "..." is the
// list of subspaces.
ompl::base::StateSpacePtr X;
ompl::base::StateSpacePtr Y;
ompl::base::StateSpacePtr Z;
ompl::base::StateSpacePtr W;
// the following line will construct a state space C1 = C[X, Y]
ompl::base::StateSpacePtr C1 = X + Y;
// the following line will construct a state space C2 = C[X, Y, Z]
ompl::base::StateSpacePtr C2 = C1 + Z;
// the following line will leave C2 as C[X, Y, Z]
ompl::base::StateSpacePtr C2 = C1 + C2;
// the following line will construct a state space C2 = C[X, Y, Z, W]
ompl::base::StateSpacePtr C2 = C2 + W;
// the following line will construct a state space C3 = C[X, Z, Y]
ompl::base::StateSpacePtr C3 = X + Z + Y;
// the following line will construct a state space C4 = C[Z, W]
ompl::base::StateSpacePtr C4 = C2 - C1;
// the following line will construct a state space C5 = W
ompl::base::StateSpacePtr C5 = C2 - C3;
// the following line will construct an empty state space C6 = C[]
ompl::base::StateSpacePtr C6 = X - X;
// the following line will construct an empty state space C7 = Y
ompl::base::StateSpacePtr C7 = Y + C6;
\endcode
These state spaces can be used when operating with states:
\code
ompl::base::ScopedState<> sX(X);
ompl::base::ScopedState<> sXY(X + Y);
ompl::base::ScopedState<> sY(Y);
ompl::base::ScopedState<> sZX(Z + X);
ompl::base::ScopedState<> sXZW(X + Z + W);
// the following line will copy the content of the state sX to
// the corresponding locations in sXZW. The components of the state
// corresponding to the Z and W state spaces are not touched
sX >> sXZW;
// the following line will initialize the X component of sXY with
// the X component of sXZW;
sXY << sXZW;
// the following line will initialize both components of sZX, using
// the X and Z components of sXZW;
sZX << sXZW;
// the following line compares the concatenation of states sX and sY with sXY
// the concatenation will automatically construct the state space X + Y and a state
// from that state space containing the information from sX and sY. Since sXY is
// constructed from the state space X + Y, the two are comparable.
bool eq = (sX ^ sY) == sXY;
\endcode
@{
*/
/** \brief Overload stream output operator. Calls ompl::base::StateSpace::printState() */
template<class T>
inline
std::ostream& operator<<(std::ostream &out, const ScopedState<T> &state)
{
state.print(out);
return out;
}
/** \brief This is a fancy version of the assignment
operator. It is a partial assignment, in some sense. The
difference is that if the states are part of compound
state spaces, the data is copied from \e from to \e to on a
component by component basis. State spaces are matched by
name. If the state space for \e to contains any subspace
whose name matches any subspace of the state space for \e
from, the corresponding state components are copied. */
template<class T, class Y>
inline
ScopedState<T>& operator<<(ScopedState<T> &to, const ScopedState<Y> &from)
{
copyStateData(to.getSpace(), to.get(), from.getSpace(), from.get());
return to;
}
/** \brief This is a fancy version of the assignment
operator. It is a partial assignment, in some sense. The
difference is that if the states are part of compound
state spaces, the data is copied from \e from to \e to on a
component by component basis. State spaces are matched by
name. If the state space for \e to contains any subspace
whose name matches any subspace of the state space for \e
from, the corresponding state components are copied. */
template<class T, class Y>
inline
const ScopedState<T>& operator>>(const ScopedState<T> &from, ScopedState<Y> &to)
{
copyStateData(to.getSpace(), to.get(), from.getSpace(), from.get());
return from;
}
/** \brief Given state \e a from state space A and state \e b
from state space B, construct a state from state space A
+ B. The resulting state contains all the information from
the input states (the states are concatenated). */
template<class T, class Y>
inline
const ScopedState<> operator^(const ScopedState<T> &a, const ScopedState<Y> &b)
{
ScopedState<> r(a.getSpace() + b.getSpace());
return r << a << b;
}
/** @} */
template<class T>
const ScopedState<> ScopedState<T>::operator[](const StateSpacePtr &s) const
{
ScopedState<> r(s);
return r << *this;
}
/** \brief Shared pointer to a ScopedState<> */
typedef boost::shared_ptr< ScopedState<> > ScopedStatePtr;
}
}
#endif
|