This file is indexed.

/usr/include/ompl/geometric/SimpleSetup.h is in libompl-dev 0.14.2+dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
/*********************************************************************
* Software License Agreement (BSD License)
*
*  Copyright (c) 2010, Rice University
*  All rights reserved.
*
*  Redistribution and use in source and binary forms, with or without
*  modification, are permitted provided that the following conditions
*  are met:
*
*   * Redistributions of source code must retain the above copyright
*     notice, this list of conditions and the following disclaimer.
*   * Redistributions in binary form must reproduce the above
*     copyright notice, this list of conditions and the following
*     disclaimer in the documentation and/or other materials provided
*     with the distribution.
*   * Neither the name of the Rice University nor the names of its
*     contributors may be used to endorse or promote products derived
*     from this software without specific prior written permission.
*
*  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
*  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
*  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
*  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
*  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
*  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
*  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
*  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
*  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
*  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
*  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
*  POSSIBILITY OF SUCH DAMAGE.
*********************************************************************/

/* Author: Ioan Sucan */

#ifndef OMPL_GEOMETRIC_SIMPLE_SETUP_
#define OMPL_GEOMETRIC_SIMPLE_SETUP_

#include "ompl/base/Planner.h"
#include "ompl/base/PlannerData.h"
#include "ompl/base/SpaceInformation.h"
#include "ompl/base/ProblemDefinition.h"
#include "ompl/geometric/PathGeometric.h"
#include "ompl/geometric/PathSimplifier.h"
#include "ompl/util/Console.h"
#include "ompl/util/Exception.h"

namespace ompl
{

    namespace geometric
    {

        /// @cond IGNORE
        OMPL_CLASS_FORWARD(SimpleSetup);
        /// @endcond

        /** \class ompl::geometric::SimpleSetupPtr
            \brief A boost shared pointer wrapper for ompl::geometric::SimpleSetup */

        /** \brief Create the set of classes typically needed to solve a
            geometric problem */
        class SimpleSetup
        {
        public:

            /** \brief Constructor needs the state space used for planning. */
            explicit
            SimpleSetup(const base::StateSpacePtr &space);

            virtual ~SimpleSetup(void)
            {
            }

            /** \brief Get the current instance of the space information */
            const base::SpaceInformationPtr& getSpaceInformation(void) const
            {
                return si_;
            }

            /** \brief Get the current instance of the problem definition */
            const base::ProblemDefinitionPtr& getProblemDefinition(void) const
            {
                return pdef_;
            }

            /** \brief Get the current instance of the state space */
            const base::StateSpacePtr& getStateSpace(void) const
            {
                return si_->getStateSpace();
            }

            /** \brief Get the current instance of the state validity checker */
            const base::StateValidityCheckerPtr& getStateValidityChecker(void) const
            {
                return si_->getStateValidityChecker();
            }

            /** \brief Get the current goal definition */
            const base::GoalPtr& getGoal(void) const
            {
                return pdef_->getGoal();
            }

            /** \brief Get the current planner */
            const base::PlannerPtr& getPlanner(void) const
            {
                return planner_;
            }

            /** \brief Get the planner allocator */
            const base::PlannerAllocator& getPlannerAllocator(void) const
            {
                return pa_;
            }

            /** \brief Get the path simplifier */
            const PathSimplifierPtr& getPathSimplifier(void) const
            {
                return psk_;
            }

            /** \brief Get the path simplifier */
            PathSimplifierPtr& getPathSimplifier(void)
            {
                return psk_;
            }

            /** \brief Return true if a solution path is available (previous call to solve() was successful) and the solution is exact (not approximate) */
            bool haveExactSolutionPath(void) const;

            /** \brief Return true if a solution path is available (previous call to solve() was successful). The solution may be approximate. */
            bool haveSolutionPath(void) const
            {
                return pdef_->getSolutionPath().get();
            }

            /** \brief Get the solution path. Throw an exception if no solution is available */
            PathGeometric& getSolutionPath(void) const;

            /** \brief Get information about the exploration data structure the motion planner used. */
            void getPlannerData(base::PlannerData &pd) const;

            /** \brief Set the state validity checker to use */
            void setStateValidityChecker(const base::StateValidityCheckerPtr &svc)
            {
                si_->setStateValidityChecker(svc);
            }

            /** \brief Set the state validity checker to use */
            void setStateValidityChecker(const base::StateValidityCheckerFn &svc)
            {
                si_->setStateValidityChecker(svc);
            }

            /** \brief Set the start and goal states to use. */
            void setStartAndGoalStates(const base::ScopedState<> &start, const base::ScopedState<> &goal,
                                       const double threshold = std::numeric_limits<double>::epsilon())
            {
                pdef_->setStartAndGoalStates(start, goal, threshold);
            }

            /** \brief Add a starting state for planning. This call is not
                needed if setStartAndGoalStates() has been called. */
            void addStartState(const base::ScopedState<> &state)
            {
                pdef_->addStartState(state);
            }

            /** \brief Clear the currently set starting states */
            void clearStartStates(void)
            {
                pdef_->clearStartStates();
            }

            /** \brief Clear the currently set starting states and add \e state as the starting state */
            void setStartState(const base::ScopedState<> &state)
            {
                clearStartStates();
                addStartState(state);
            }

            /** \brief A simple form of setGoal(). The goal will be an instance of ompl::base::GoalState */
            void setGoalState(const base::ScopedState<> &goal, const double threshold = std::numeric_limits<double>::epsilon())
            {
                pdef_->setGoalState(goal, threshold);
            }

            /** \brief Set the goal for planning. This call is not
                needed if setStartAndGoalStates() has been called. */
            void setGoal(const base::GoalPtr &goal)
            {
                pdef_->setGoal(goal);
            }

            /** \brief Set the planner to use. If the planner is not
                set, an attempt is made to use the planner
                allocator. If no planner allocator is available
                either, a default planner is set. */
            void setPlanner(const base::PlannerPtr &planner)
            {
                if (planner && planner->getSpaceInformation().get() != si_.get())
                    throw Exception("Planner instance does not match space information");
                planner_ = planner;
                configured_ = false;
            }

            /** \brief Set the planner allocator to use. This is only
                used if no planner has been set. This is optional -- a default
                planner will be used if no planner is otherwise specified. */
            void setPlannerAllocator(const base::PlannerAllocator &pa)
            {
                pa_ = pa;
                planner_.reset();
                configured_ = false;
            }

            /** \brief Run the planner for up to a specified amount of time (default is 1 second) */
            virtual base::PlannerStatus solve(double time = 1.0);

            /** \brief Run the planner until \e ptc becomes true (at most) */
            virtual base::PlannerStatus solve(const base::PlannerTerminationCondition &ptc);

            /** \brief Return the status of the last planning attempt */
            base::PlannerStatus getLastPlannerStatus(void) const
            {
                return last_status_;
            }

            /** \brief Get the amount of time (in seconds) spent during the last planning step */
            double getLastPlanComputationTime(void) const
            {
                return planTime_;
            }

            /** \brief Get the amount of time (in seconds) spend during the last path simplification step */
            double getLastSimplificationTime(void) const
            {
                return simplifyTime_;
            }

            /** \brief Attempt to simplify the current solution path. Spent at most \e duration seconds in the simplification process.
                If \e duration is 0 (the default), a default simplification procedure is executed. */
            void simplifySolution(double duration = 0.0);

            /** \brief Attempt to simplify the current solution path. Stop computation when \e ptc becomes true at the latest. */
            void simplifySolution(const base::PlannerTerminationCondition &ptc);

            /** \brief Clear all planning data. This only includes
                data generated by motion plan computation. Planner
                settings, start & goal states are not affected. */
            virtual void clear(void);

            /** \brief Print information about the current setup */
            virtual void print(std::ostream &out = std::cout) const;

            /** \brief This method will create the necessary classes
                for planning. The solve() method will call this
                function automatically. */
            virtual void setup(void);

            /** \brief Get the  parameters for this planning context */
            base::ParamSet& params(void)
            {
                return params_;
            }

            /** \brief Get the  parameters for this planning context */
            const base::ParamSet& params(void) const
            {
                return params_;
            }

        protected:

            /// The created space information
            base::SpaceInformationPtr     si_;

            /// The created problem definition
            base::ProblemDefinitionPtr    pdef_;

            /// The maintained planner instance
            base::PlannerPtr              planner_;

            /// The optional planner allocator
            base::PlannerAllocator        pa_;

            /// The instance of the path simplifier
            PathSimplifierPtr             psk_;

            /// Flag indicating whether the classes needed for planning are set up
            bool                          configured_;

            /// The amount of time the last planning step took
            double                        planTime_;

            /// The amount of time the last path simplification step took
            double                        simplifyTime_;

            /// The status of the last planning request
            base::PlannerStatus           last_status_;

            /// The parameters that describe the planning context
            base::ParamSet                params_;
        };

        /** \brief Given a goal specification, decide on a planner for that goal */
        base::PlannerPtr getDefaultPlanner(const base::GoalPtr &goal);
    }

}
#endif