This file is indexed.

/usr/include/OpenMS/KERNEL/MSSpectrum.h is in libopenms-dev 1.11.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
// --------------------------------------------------------------------------
//                   OpenMS -- Open-Source Mass Spectrometry
// --------------------------------------------------------------------------
// Copyright The OpenMS Team -- Eberhard Karls University Tuebingen,
// ETH Zurich, and Freie Universitaet Berlin 2002-2013.
//
// This software is released under a three-clause BSD license:
//  * Redistributions of source code must retain the above copyright
//    notice, this list of conditions and the following disclaimer.
//  * Redistributions in binary form must reproduce the above copyright
//    notice, this list of conditions and the following disclaimer in the
//    documentation and/or other materials provided with the distribution.
//  * Neither the name of any author or any participating institution
//    may be used to endorse or promote products derived from this software
//    without specific prior written permission.
// For a full list of authors, refer to the file AUTHORS.
// --------------------------------------------------------------------------
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL ANY OF THE AUTHORS OR THE CONTRIBUTING
// INSTITUTIONS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
// OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// --------------------------------------------------------------------------
// $Maintainer: Stephan Aiche$
// $Authors: Marc Sturm $
// --------------------------------------------------------------------------

#ifndef OPENMS_KERNEL_MSSPECTRUM_H
#define OPENMS_KERNEL_MSSPECTRUM_H

#include <OpenMS/METADATA/SpectrumSettings.h>
#include <OpenMS/METADATA/MetaInfoDescription.h>
#include <OpenMS/FORMAT/DB/PersistentObject.h>
#include <OpenMS/KERNEL/RangeManager.h>
#include <OpenMS/KERNEL/ComparatorUtils.h>

namespace OpenMS
{
  class Peak1D;

  /**
    @brief The representation of a 1D spectrum.

    It contains peak data and metadata about specific instrument settings,
    acquisition settings, description of the meta values used in the peaks and precursor info
    (SpectrumSettings).

    Several MSSpectrum instances are contained in a peak map (MSExperiment), which is essentially
    a vector of spectra with additional information about the experiment.

    Precursor info from SpectrumSettings should only be used if this spectrum is a tandem-MS
    spectrum. The precursor spectrum is the first spectrum in MSExperiment, that has a lower
    MS-level than the current spectrum.

    @note For range operations, see \ref RangeUtils "RangeUtils module"!

    @ingroup Kernel
  */
  template <typename PeakT = Peak1D>
  class MSSpectrum :
    public std::vector<PeakT>,
    public RangeManager<1>,
    public SpectrumSettings,
    public PersistentObject
  {
public:

    ///Float data array class
    class OPENMS_DLLAPI FloatDataArray :
      public MetaInfoDescription,
      public std::vector<Real>
    {};

    ///Integer data array class
    class OPENMS_DLLAPI IntegerDataArray :
      public MetaInfoDescription,
      public std::vector<Int>
    {};

    ///String data array class
    class OPENMS_DLLAPI StringDataArray :
      public MetaInfoDescription,
      public std::vector<String>
    {};

    ///Comparator for the retention time.
    struct RTLess :
      public std::binary_function<MSSpectrum, MSSpectrum, bool>
    {
      inline bool operator()(const MSSpectrum & a, const MSSpectrum & b) const
      {
        return a.getRT() < b.getRT();
      }

    };

    ///@name Base type definitions
    //@{
    /// Peak type
    typedef PeakT PeakType;
    /// Coordinate (m/z) type
    typedef typename PeakType::CoordinateType CoordinateType;
    /// Spectrum base type
    typedef std::vector<PeakType> ContainerType;
    /// Float data array vector type
    typedef std::vector<FloatDataArray> FloatDataArrays;
    /// String data array vector type
    typedef std::vector<StringDataArray> StringDataArrays;
    /// Integer data array vector type
    typedef std::vector<IntegerDataArray> IntegerDataArrays;
    //@}

    ///@name Peak container iterator type definitions
    //@{
    /// Mutable iterator
    typedef typename ContainerType::iterator Iterator;
    /// Non-mutable iterator
    typedef typename ContainerType::const_iterator ConstIterator;
    /// Mutable reverse iterator
    typedef typename ContainerType::reverse_iterator ReverseIterator;
    /// Non-mutable reverse iterator
    typedef typename ContainerType::const_reverse_iterator ConstReverseIterator;
    //@}


    /// Constructor
    MSSpectrum() :
      ContainerType(),
      RangeManager<1>(),
      SpectrumSettings(),
      PersistentObject(),
      retention_time_(-1),
      ms_level_(1),
      name_(),
      float_data_arrays_(),
      string_data_arrays_(),
      integer_data_arrays_()
    {}

    /// Copy constructor
    MSSpectrum(const MSSpectrum & source) :
      ContainerType(source),
      RangeManager<1>(source),
      SpectrumSettings(source),
      PersistentObject(source),
      retention_time_(source.retention_time_),
      ms_level_(source.ms_level_),
      name_(source.name_),
      float_data_arrays_(source.float_data_arrays_),
      string_data_arrays_(source.string_data_arrays_),
      integer_data_arrays_(source.integer_data_arrays_)
    {}

    /// Destructor
    ~MSSpectrum()
    {}

    /// Assignment operator
    MSSpectrum & operator=(const MSSpectrum & source)
    {
      if (&source == this) return *this;

      ContainerType::operator=(source);
      RangeManager<1>::operator=(source);
      SpectrumSettings::operator=(source);
      PersistentObject::operator=(source);

      retention_time_ = source.retention_time_;
      ms_level_ = source.ms_level_;
      name_ = source.name_;
      float_data_arrays_ = source.float_data_arrays_;
      string_data_arrays_ = source.string_data_arrays_;
      integer_data_arrays_ = source.integer_data_arrays_;

      return *this;
    }

    /// Equality operator
    bool operator==(const MSSpectrum & rhs) const
    {
      //name_ can differ => it is not checked
      return std::operator==(*this, rhs) &&
             RangeManager<1>::operator==(rhs) &&
             SpectrumSettings::operator==(rhs)  &&
             retention_time_ == rhs.retention_time_ &&
             ms_level_ == rhs.ms_level_ &&
             float_data_arrays_ == rhs.float_data_arrays_ &&
             string_data_arrays_ == rhs.string_data_arrays_ &&
             integer_data_arrays_ == rhs.integer_data_arrays_;
    }

    /// Equality operator
    bool operator!=(const MSSpectrum & rhs) const
    {
      return !(operator==(rhs));
    }

    // Docu in base class (RangeManager)
    virtual void updateRanges()
    {
      this->clearRanges();
      updateRanges_(ContainerType::begin(), ContainerType::end());
    }

    ///@name Accessors for meta information
    ///@{
    /// Returns the absolute retention time (is seconds)
    inline DoubleReal getRT() const
    {
      return retention_time_;
    }

    /// Sets the absolute retention time (is seconds)
    inline void setRT(DoubleReal rt)
    {
      retention_time_ = rt;
    }

    /**
      @brief Returns the MS level.

      For survey scans this is 1, for MS/MS scans 2, ...
    */
    inline UInt getMSLevel() const
    {
      return ms_level_;
    }

    /// Sets the MS level.
    inline void setMSLevel(UInt ms_level)
    {
      ms_level_ = ms_level;
    }

    /// Returns the name
    inline const String & getName() const
    {
      return name_;
    }

    /// Sets the name
    inline void setName(const String & name)
    {
      name_ = name;
    }

    //@}

    /**
      @name Peak data array methods

      These methods are used to annotate each peak in a spectrum with meta information.
      It is an intermediate way between storing the information in the peak's MetaInfoInterface
      and deriving a new peak type with members for this information.

      These statements should help you chose which approach to use
        - Access to meta info arrays is slower than to a member variable
        - Access to meta info arrays is faster than to a %MetaInfoInterface
        - Meta info arrays are stored when using mzML format for storing
    */
    //@{
    /// Returns a const reference to the float meta data arrays
    inline const FloatDataArrays & getFloatDataArrays() const
    {
      return float_data_arrays_;
    }

    /// Returns a mutable reference to the float meta data arrays
    inline FloatDataArrays & getFloatDataArrays()
    {
      return float_data_arrays_;
    }

    /// Returns a const reference to the string meta data arrays
    inline const StringDataArrays & getStringDataArrays() const
    {
      return string_data_arrays_;
    }

    /// Returns a mutable reference to the string meta data arrays
    inline StringDataArrays & getStringDataArrays()
    {
      return string_data_arrays_;
    }

    /// Returns a const reference to the integer meta data arrays
    inline const IntegerDataArrays & getIntegerDataArrays() const
    {
      return integer_data_arrays_;
    }

    /// Returns a mutable reference to the integer meta data arrays
    inline IntegerDataArrays & getIntegerDataArrays()
    {
      return integer_data_arrays_;
    }

    //@}

    ///@name Sorting peaks
    //@{
    /**
      @brief Lexicographically sorts the peaks by their intensity.

      Sorts the peaks according to ascending intensity. Meta data arrays will be sorted accordingly.
    */
    void sortByIntensity(bool reverse = false)
    {
      if (float_data_arrays_.empty() && string_data_arrays_.empty() && integer_data_arrays_.empty())
      {
        if (reverse)
        {
          std::sort(ContainerType::begin(), ContainerType::end(), reverseComparator(typename PeakType::IntensityLess()));
        }
        else
        {
          std::sort(ContainerType::begin(), ContainerType::end(), typename PeakType::IntensityLess());
        }
      }
      else
      {
        //sort index list
        std::vector<std::pair<typename PeakType::IntensityType, Size> > sorted_indices;
        sorted_indices.reserve(ContainerType::size());
        for (Size i = 0; i < ContainerType::size(); ++i)
        {
          sorted_indices.push_back(std::make_pair(ContainerType::operator[](i).getIntensity(), i));
        }

        if (reverse)
        {
          std::sort(sorted_indices.begin(), sorted_indices.end(), reverseComparator(PairComparatorFirstElement<std::pair<typename PeakType::IntensityType, Size> >()));
        }
        else
        {
          std::sort(sorted_indices.begin(), sorted_indices.end(), PairComparatorFirstElement<std::pair<typename PeakType::IntensityType, Size> >());
        }

        //apply sorting to ContainerType and to meta data arrays
        ContainerType tmp;
        for (Size i = 0; i < sorted_indices.size(); ++i)
        {
          tmp.push_back(*(ContainerType::begin() + (sorted_indices[i].second)));
        }
        ContainerType::swap(tmp);

        for (Size i = 0; i < float_data_arrays_.size(); ++i)
        {
          std::vector<Real> mda_tmp;
          for (Size j = 0; j < float_data_arrays_[i].size(); ++j)
          {
            mda_tmp.push_back(*(float_data_arrays_[i].begin() + (sorted_indices[j].second)));
          }
          float_data_arrays_[i].swap(mda_tmp);
        }

        for (Size i = 0; i < string_data_arrays_.size(); ++i)
        {
          std::vector<String> mda_tmp;
          for (Size j = 0; j < string_data_arrays_[i].size(); ++j)
          {
            mda_tmp.push_back(*(string_data_arrays_[i].begin() + (sorted_indices[j].second)));
          }
          string_data_arrays_[i].swap(mda_tmp);
        }

        for (Size i = 0; i < integer_data_arrays_.size(); ++i)
        {
          std::vector<Int> mda_tmp;
          for (Size j = 0; j < integer_data_arrays_[i].size(); ++j)
          {
            mda_tmp.push_back(*(integer_data_arrays_[i].begin() + (sorted_indices[j].second)));
          }
          integer_data_arrays_[i].swap(mda_tmp);
        }
      }
    }

    /**
      @brief Lexicographically sorts the peaks by their position.

      The spectrum is sorted with respect to position. Meta data arrays will be sorted accordingly.
    */
    void sortByPosition()
    {
      if (float_data_arrays_.empty())
      {
        std::sort(ContainerType::begin(), ContainerType::end(), typename PeakType::PositionLess());
      }
      else
      {
        //sort index list
        std::vector<std::pair<typename PeakType::PositionType, Size> > sorted_indices;
        sorted_indices.reserve(ContainerType::size());
        for (Size i = 0; i < ContainerType::size(); ++i)
        {
          sorted_indices.push_back(std::make_pair(ContainerType::operator[](i).getPosition(), i));
        }
        std::sort(sorted_indices.begin(), sorted_indices.end(), PairComparatorFirstElement<std::pair<typename PeakType::PositionType, Size> >());

        //apply sorting to ContainerType and to metadataarrays
        ContainerType tmp;
        tmp.reserve(sorted_indices.size());
        for (Size i = 0; i < sorted_indices.size(); ++i)
        {
          tmp.push_back(*(ContainerType::begin() + (sorted_indices[i].second)));
        }
        ContainerType::swap(tmp);

        for (Size i = 0; i < float_data_arrays_.size(); ++i)
        {
          std::vector<Real> mda_tmp;
          mda_tmp.reserve(float_data_arrays_[i].size());
          for (Size j = 0; j < float_data_arrays_[i].size(); ++j)
          {
            mda_tmp.push_back(*(float_data_arrays_[i].begin() + (sorted_indices[j].second)));
          }
          std::swap(float_data_arrays_[i], mda_tmp);
        }

        for (Size i = 0; i < string_data_arrays_.size(); ++i)
        {
          std::vector<String> mda_tmp;
          mda_tmp.reserve(string_data_arrays_[i].size());
          for (Size j = 0; j < string_data_arrays_[i].size(); ++j)
          {
            mda_tmp.push_back(*(string_data_arrays_[i].begin() + (sorted_indices[j].second)));
          }
          std::swap(string_data_arrays_[i], mda_tmp);
        }

        for (Size i = 0; i < integer_data_arrays_.size(); ++i)
        {
          std::vector<Int> mda_tmp;
          mda_tmp.reserve(integer_data_arrays_[i].size());
          for (Size j = 0; j < integer_data_arrays_[i].size(); ++j)
          {
            mda_tmp.push_back(*(integer_data_arrays_[i].begin() + (sorted_indices[j].second)));
          }
          std::swap(integer_data_arrays_[i], mda_tmp);
        }
      }
    }

    /// Checks if all peaks are sorted with respect to ascending m/z
    bool isSorted() const
    {
      for (Size i = 1; i < this->size(); ++i)
      {
        if (this->operator[](i - 1).getMZ() > this->operator[](i).getMZ()) return false;
      }
      return true;
    }

    //@}

    ///@name Searching a peak or peak range
    ///@{
    /**
      @brief Binary search for the peak nearest to a specific m/z

      @param mz The searched for mass-to-charge ratio searched
      @return Returns the index of the peak.

      @note Make sure the spectrum is sorted with respect to m/z! Otherwise the result is undefined.

      @exception Exception::Precondition is thrown if the spectrum is empty (not only in debug mode)
    */
    Size findNearest(CoordinateType mz) const
    {
      // no peak => no search
      if (ContainerType::size() == 0) throw Exception::Precondition(__FILE__, __LINE__, __PRETTY_FUNCTION__, "There must be at least one peak to determine the nearest peak!");

      // search for position for inserting
      ConstIterator it = MZBegin(mz);
      // border cases
      if (it == ContainerType::begin()) return 0;

      if (it == ContainerType::end()) return ContainerType::size() - 1;

      // the peak before or the current peak are closest
      ConstIterator it2 = it;
      --it2;
      if (std::fabs(it->getMZ() - mz) < std::fabs(it2->getMZ() - mz))
      {
        return Size(it - ContainerType::begin());
      }
      else
      {
        return Size(it2 - ContainerType::begin());
      }
    }

    /**
      @brief Binary search for peak range begin

      @note Make sure the spectrum is sorted with respect to m/z! Otherwise the result is undefined.
    */
    Iterator MZBegin(CoordinateType mz)
    {
      PeakType p;
      p.setPosition(mz);
      return lower_bound(ContainerType::begin(), ContainerType::end(), p, typename PeakType::PositionLess());
    }

    /**
      @brief Binary search for peak range begin

      @note Make sure the spectrum is sorted with respect to m/z! Otherwise the result is undefined.
    */
    Iterator MZBegin(Iterator begin, CoordinateType mz, Iterator end)
    {
      PeakType p;
      p.setPosition(mz);
      return lower_bound(begin, end, p, typename PeakType::PositionLess());
    }

    /**
      @brief Binary search for peak range end (returns the past-the-end iterator)

      @note Make sure the spectrum is sorted with respect to m/z. Otherwise the result is undefined.
    */
    Iterator MZEnd(CoordinateType mz)
    {
      PeakType p;
      p.setPosition(mz);
      return upper_bound(ContainerType::begin(), ContainerType::end(), p, typename PeakType::PositionLess());
    }

    /**
      @brief Binary search for peak range end (returns the past-the-end iterator)

      @note Make sure the spectrum is sorted with respect to m/z. Otherwise the result is undefined.
    */
    Iterator MZEnd(Iterator begin, CoordinateType mz, Iterator end)
    {
      PeakType p;
      p.setPosition(mz);
      return upper_bound(begin, end, p, typename PeakType::PositionLess());
    }

    /**
      @brief Binary search for peak range begin

      @note Make sure the spectrum is sorted with respect to m/z! Otherwise the result is undefined.
    */
    ConstIterator MZBegin(CoordinateType mz) const
    {
      PeakType p;
      p.setPosition(mz);
      return lower_bound(ContainerType::begin(), ContainerType::end(), p, typename PeakType::PositionLess());
    }

    /**
      @brief Binary search for peak range begin

      @note Make sure the spectrum is sorted with respect to m/z! Otherwise the result is undefined.
    */
    ConstIterator MZBegin(ConstIterator begin, CoordinateType mz, ConstIterator end) const
    {
      PeakType p;
      p.setPosition(mz);
      return lower_bound(begin, end, p, typename PeakType::PositionLess());
    }

    /**
      @brief Binary search for peak range end (returns the past-the-end iterator)

      @note Make sure the spectrum is sorted with respect to m/z. Otherwise the result is undefined.
    */
    ConstIterator MZEnd(CoordinateType mz) const
    {
      PeakType p;
      p.setPosition(mz);
      return upper_bound(ContainerType::begin(), ContainerType::end(), p, typename PeakType::PositionLess());
    }

    /**
      @brief Binary search for peak range end (returns the past-the-end iterator)

      @note Make sure the spectrum is sorted with respect to m/z. Otherwise the result is undefined.
    */
    ConstIterator MZEnd(ConstIterator begin, CoordinateType mz, ConstIterator end) const
    {
      PeakType p;
      p.setPosition(mz);
      return upper_bound(begin, end, p, typename PeakType::PositionLess());
    }

    //@}


    /**
      @brief Clears all data and meta data

      @param clear_meta_data If @em true, all meta data is cleared in addition to the data.
    */
    void clear(bool clear_meta_data)
    {
      ContainerType::clear();

      if (clear_meta_data)
      {
        clearRanges();
        clearId();
        this->SpectrumSettings::operator=(SpectrumSettings()); // no "clear" method
        retention_time_ = -1.0;
        ms_level_ = 1;
        name_.clear();
        float_data_arrays_.clear();
        string_data_arrays_.clear();
        integer_data_arrays_.clear();
      }
    }

protected:
    // Docu in base class
    virtual void clearChildIds_()
    {}

    /// Retention time
    DoubleReal retention_time_;

    /// MS level
    UInt ms_level_;

    /// Name
    String name_;

    /// Float data arrays
    FloatDataArrays float_data_arrays_;

    /// String data arrays
    StringDataArrays string_data_arrays_;

    /// Intager data arrays
    IntegerDataArrays integer_data_arrays_;
  };

  /// Print the contents to a stream.
  template <typename PeakT>
  std::ostream & operator<<(std::ostream & os, const MSSpectrum<PeakT> & spec)
  {
    os << "-- MSSPECTRUM BEGIN --" << std::endl;

    //spectrum settings
    os << static_cast<const SpectrumSettings &>(spec);

    //peaklist
    for (typename MSSpectrum<PeakT>::ConstIterator it = spec.begin(); it != spec.end(); ++it)
    {
      os << *it << std::endl;
    }

    os << "-- MSSPECTRUM END --" << std::endl;
    return os;
  }

} // namespace OpenMS

#endif // OPENMS_KERNEL_MSSPECTRUM_H