This file is indexed.

/usr/include/OpenMS/MATH/STATISTICS/BasicStatistics.h is in libopenms-dev 1.11.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
// --------------------------------------------------------------------------
//                   OpenMS -- Open-Source Mass Spectrometry
// --------------------------------------------------------------------------
// Copyright The OpenMS Team -- Eberhard Karls University Tuebingen,
// ETH Zurich, and Freie Universitaet Berlin 2002-2013.
//
// This software is released under a three-clause BSD license:
//  * Redistributions of source code must retain the above copyright
//    notice, this list of conditions and the following disclaimer.
//  * Redistributions in binary form must reproduce the above copyright
//    notice, this list of conditions and the following disclaimer in the
//    documentation and/or other materials provided with the distribution.
//  * Neither the name of any author or any participating institution
//    may be used to endorse or promote products derived from this software
//    without specific prior written permission.
// For a full list of authors, refer to the file AUTHORS.
// --------------------------------------------------------------------------
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL ANY OF THE AUTHORS OR THE CONTRIBUTING
// INSTITUTIONS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
// OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// --------------------------------------------------------------------------
// $Maintainer: Clemens Groepl $
// $Authors: $
// --------------------------------------------------------------------------

#ifndef OPENMS_MATH_STATISTICS_BASICSTATISTICS_H
#define OPENMS_MATH_STATISTICS_BASICSTATISTICS_H

#include <OpenMS/CONCEPT/Types.h>
#include <vector>
#include <ostream>
#include <cmath>
#include <numeric>

namespace OpenMS
{
  namespace Math
  {

    /**
         @brief Calculates some basic statistical parameters of a distribution:
         sum, mean, variance, and provides the normal approximation.

         The intended usage is as follows:
         - <i>create</i> an instance
         - <i>set</i> the basic statistical parameters by either
                - calling one of the update() member functions, or
                - using the set... methods
                .
         - <i>do</i> something with the basic statistical parameters, e.g.
                - using the get... methods, or
                - obtain samples from a normal approximation with these parameters
                - whatever member function you might want to add to this class ;-)
         .

         @ingroup Math
    */
    template <typename RealT = DoubleReal>
    class
    BasicStatistics
    {

public:

      /// The real type specified as template argument.
      typedef RealT RealType;

      typedef std::vector<RealType> probability_container;
      typedef std::vector<RealType> coordinate_container;

      /// Default constructor.
      BasicStatistics() :
        mean_(0),
        variance_(0),
        sum_(0)
      {}

      /// Copy constructor.
      BasicStatistics(BasicStatistics const & arg) :
        mean_(arg.mean_),
        variance_(arg.variance_),
        sum_(arg.sum_)
      {}

      /// Assignment.
      BasicStatistics & operator=(BasicStatistics const & arg)
      {
        mean_      = arg.mean_;
        variance_  = arg.variance_;
        sum_       = arg.sum_;
        return *this;
      }

      /// Set sum, mean, and variance to zero.
      void clear()
      {
        mean_ = 0;
        variance_ = 0;
        sum_ = 0;
      }

      /// This does the actual calculation.
      /** You can call this as often as you like, using different input vectors. */
      template <typename ProbabilityIterator>
      void update(ProbabilityIterator probability_begin,
                  ProbabilityIterator const probability_end
                  )
      {
        clear();
        unsigned pos = 0;
        ProbabilityIterator iter = probability_begin;

        for (; iter != probability_end; ++iter, ++pos)
        {
          sum_  += *iter;
          mean_ += *iter * pos;
        }
        mean_ /= sum_;

        for (iter = probability_begin, pos = 0; iter != probability_end; ++iter, ++pos)
        {
          RealType diff = RealType(pos) - mean_;
          diff *= diff;
          variance_ += *iter * diff;
        }
        variance_ /= sum_;
      }

      /// This does the actual calculation.
      /** You can call this as often as you like, using different input vectors. */
      template <typename ProbabilityIterator, typename CoordinateIterator>
      void update(ProbabilityIterator const probability_begin,
                  ProbabilityIterator const probability_end,
                  CoordinateIterator  const coordinate_begin
                  )
      {
        clear();
        ProbabilityIterator prob_iter = probability_begin;
        CoordinateIterator  coord_iter = coordinate_begin;

        for (; prob_iter != probability_end; ++prob_iter, ++coord_iter)
        {
          sum_  += *prob_iter;
          mean_ += *prob_iter * *coord_iter;
        }
        mean_ /= sum_;

        for (prob_iter = probability_begin, coord_iter = coordinate_begin;
             prob_iter != probability_end;
             ++prob_iter, ++coord_iter
             )
        {
          RealType diff = *coord_iter - mean_;
          diff *= diff;
          variance_ += *prob_iter * diff;
        }
        variance_ /= sum_;
        return;
      }

      /// Returns the mean.
      RealType mean() const { return mean_; }
      void setMean(RealType const & mean) { mean_ = mean; }

      /// Returns the variance.
      RealType variance() const { return variance_; }
      void setVariance(RealType const & variance) { variance_ = variance; }

      /// Returns the sum.
      RealType sum() const { return sum_; }
      void setSum(RealType const & sum) { sum_ = sum; }


      /**@brief Returns the density of the normal approximation at point,
           multiplied by sqrt( 2 * pi ).  This saves a division operation compared
           to normalDensity()
      */
      RealType normalDensity_sqrt2pi(RealType coordinate) const
      {
        coordinate -= mean();
        coordinate *= coordinate;
        return exp(-coordinate / RealType(2) / variance());
      }

      /// Returns sqrt( 2 * pi ), which is useful to normalize the result of normalDensity_sqrt2pi().
      static RealType sqrt2pi() { return 2.50662827463100050240; }

      /**@brief See normalDensity_sqrt2pi().  Returns the density of the normal
           distribution at point.
      */
      inline RealType normalDensity(RealType const coordinate) const
      {
        return normalDensity_sqrt2pi(coordinate) / sqrt2pi();
      }

      /**@brief The argument \c probability is filled with values according to
           the normal approximation.  Its \c size() is not changed.  The
           approximation takes place at coordinate positions 0, 1, ..., size()-1.
      */
      void normalApproximation(probability_container & probability)
      {
        normalApproximationHelper_(probability, probability.size());
        return;
      }

      /** The argument \c probability is filled with values according to the
              normal approximation.  Its size() is set to \c size.  The
              approximation takes place at coordinate positions 0, 1, ..., size-1.
      */
      void normalApproximation(probability_container & probability,
                               typename probability_container::size_type const size
                               )
      {
        probability.resize(size);
        normalApproximationHelper_(probability, size);
        return;
      }

      /**@brief The argument probability is filled with values according to the
           normal approximation.  The second argument coordinate contains the
           positions where the approximation takes place.  probability.size() is
           set to coordinate.size().
      */
      void normalApproximation(probability_container & probability,
                               coordinate_container  const & coordinate
                               )
      {
        probability.resize(coordinate.size());
        normalApproximationHelper_(probability, coordinate);
        return;
      }

      /**@brief A convenient overload for debugging purposes.

      @relatesalso BasicStatistics
      */
      friend std::ostream & operator<<(std::ostream & os, BasicStatistics & arg)
      {
        os << "BasicStatistics:  mean=" << arg.mean() << "  variance=" << arg.variance() << "  sum=" << arg.sum();
        return os;
      }

protected:

      /// @name Protected Members
      //@{

      RealType mean_;
      RealType variance_;
      RealType sum_;

private:
      //@}

      /// @name Private Methods
      //@{

      void normalApproximationHelper_(probability_container & probability,
                                      typename probability_container::size_type const size
                                      )
      {
        RealType gaussSum = 0;
        typename coordinate_container::size_type i;

        // precondition size == probability.size() is guaranteed by wrappers.
        for (i = 0; i < size; ++i)
        {
          gaussSum += normalDensity_sqrt2pi(RealType(i));
        }

        for (i = 0; i < size; ++i)
        {
          probability[i] = normalDensity_sqrt2pi(RealType(i)) / gaussSum * sum();
        }
        return;
      }

      void normalApproximationHelper_(probability_container & probability,
                                      coordinate_container const & coordinate
                                      )
      {
        RealType gaussSum = 0;
        typename coordinate_container::size_type i;
        typename coordinate_container::size_type const size = coordinate.size();

        for (i = 0; i < size; ++i)
        {
          gaussSum += normalDensity_sqrt2pi(coordinate[i]);
        }

        for (i = 0; i < size; ++i)
        {
          probability[i] = normalDensity_sqrt2pi(coordinate[i]) / gaussSum * sum();
        }
        return;
      }

      //@}

    };

  }   // namespace Math

} // namespace OpenMS

#endif // OPENMS_MATH_STATISTICS_BASICSTATISTICS_H