This file is indexed.

/usr/include/OpenMS/MATH/STATISTICS/LinearRegression.h is in libopenms-dev 1.11.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
// --------------------------------------------------------------------------
//                   OpenMS -- Open-Source Mass Spectrometry
// --------------------------------------------------------------------------
// Copyright The OpenMS Team -- Eberhard Karls University Tuebingen,
// ETH Zurich, and Freie Universitaet Berlin 2002-2013.
//
// This software is released under a three-clause BSD license:
//  * Redistributions of source code must retain the above copyright
//    notice, this list of conditions and the following disclaimer.
//  * Redistributions in binary form must reproduce the above copyright
//    notice, this list of conditions and the following disclaimer in the
//    documentation and/or other materials provided with the distribution.
//  * Neither the name of any author or any participating institution
//    may be used to endorse or promote products derived from this software
//    without specific prior written permission.
// For a full list of authors, refer to the file AUTHORS.
// --------------------------------------------------------------------------
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL ANY OF THE AUTHORS OR THE CONTRIBUTING
// INSTITUTIONS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
// OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// --------------------------------------------------------------------------
// $Maintainer: Clemens Groepl $
// $Authors: $
// --------------------------------------------------------------------------

#ifndef OPENMS_MATH_STATISTICS_LINEARREGRESSION_H
#define OPENMS_MATH_STATISTICS_LINEARREGRESSION_H

#include <OpenMS/CONCEPT/Types.h>
#include <OpenMS/CONCEPT/Exception.h>

#include <iostream>
#include <vector>
#include <gsl/gsl_fit.h>
#include <gsl/gsl_statistics.h>
#include <gsl/gsl_cdf.h>

namespace OpenMS
{
  namespace Math
  {
    /**
            @brief This class offers functions to perform least-squares fits to a straight line model, \f$ Y(c,x) = c_0 + c_1 x \f$.

            It capsulates the GSL methods for a weighted and an unweighted linear regression.

            Next to the intercept with the y-axis and the slope of the fitted line, this class computes the:
            - squared pearson coefficient
            - value of the t-distribution
            - standard deviation of the residuals
            - standard error of the slope
            - intercept with the x-axis (useful for additive series experiments)
            - lower border of confidence interval
            - higher border of confidence interval
            - chi squared value
            - x mean

            @ingroup Math
    */
    class OPENMS_DLLAPI LinearRegression
    {
public:

      /// Constructor
      LinearRegression() :
        intercept_(0),
        slope_(0),
        x_intercept_(0),
        lower_(0),
        upper_(0),
        t_star_(0),
        r_squared_(0),
        stand_dev_residuals_(0),
        mean_residuals_(0),
        stand_error_slope_(0),
        chi_squared_(0),
        rsd_(0)
      {
      }

      /// Destructor
      virtual ~LinearRegression()
      {
      }

      /**
          @brief This function computes the best-fit linear regression coefficients \f$ (c_0,c_1) \f$
          of the model \f$ Y = c_0 + c_1 X \f$ for the dataset \f$ (x, y) \f$.

          The values in x-dimension of the dataset \f$ (x,y) \f$ are given by the iterator range [x_begin,x_end)
          and the corresponding y-values start at position y_begin.


          For a  "x %" Confidence Interval use confidence_interval_P = x/100.
          For example the 95% Confidence Interval is supposed to be an interval that has a 95% chance of
          containing the true value of the parameter.

          @return If an error occured during the fit.

          @exception Exception::UnableToFit is thrown if fitting cannot be performed
      */
      template <typename Iterator>
      void computeRegression(double confidence_interval_P, Iterator x_begin, Iterator x_end, Iterator y_begin);

      /**
          @brief This function computes the best-fit linear regression coefficient \f$ (c_0) \f$
          of the model \f$ Y = c_1 X \f$ for the dataset \f$ (x, y) \f$.

          The values in x-dimension of the dataset \f$ (x,y) \f$ are given by the iterator range [x_begin,x_end)
          and the corresponding y-values start at position y_begin.

          For a  "x %" Confidence Interval use confidence_interval_P = x/100.
          For example the 95% Confidence Interval is supposed to be an interval that has a 95% chance of
          containing the true value of the parameter.

          @return If an error occured during the fit.

          @exception Exception::UnableToFit is thrown if fitting cannot be performed
      */
      template <typename Iterator>
      void computeRegressionNoIntercept(double confidence_interval_P, Iterator x_begin, Iterator x_end, Iterator y_begin);

      /**
          @brief This function computes the best-fit linear regression coefficients \f$ (c_0,c_1) \f$
          of the model \f$ Y = c_0 + c_1 X \f$ for the weighted dataset \f$ (x, y) \f$.

          The values in x-dimension of the dataset \f$ (x, y) \f$ are given by the iterator range [x_begin,x_end)
          and the corresponding y-values start at position y_begin. They will be weighted by the
          values starting at w_begin.

          For a  "x %" Confidence Interval use confidence_interval_P = x/100.
          For example the 95% Confidence Interval is supposed to be an interval that has a 95% chance of
          containing the true value of the parameter.

          @return If an error occured during the fit.

          @exception Exception::UnableToFit is thrown if fitting cannot be performed
      */
      template <typename Iterator>
      void computeRegressionWeighted(double confidence_interval_P, Iterator x_begin, Iterator x_end, Iterator y_begin, Iterator w_begin);


      /// Non-mutable access to the y-intercept of the straight line
      DoubleReal getIntercept() const;
      /// Non-mutable access to the slope of the straight line
      DoubleReal getSlope() const;
      /// Non-mutable access to the x-intercept of the straight line
      DoubleReal getXIntercept() const;
      /// Non-mutable access to the lower border of confidence interval
      DoubleReal getLower() const;
      /// Non-mutable access to the upper border of confidence interval
      DoubleReal getUpper() const;
      /// Non-mutable access to the value of the t-distribution
      DoubleReal getTValue() const;
      /// Non-mutable access to the squared pearson coefficient
      DoubleReal getRSquared() const;
      /// Non-mutable access to the standard deviation of the residuals
      DoubleReal getStandDevRes() const;
      /// Non-mutable access to the residual mean
      DoubleReal getMeanRes() const;
      /// Non-mutable access to the standard error of the slope
      DoubleReal getStandErrSlope() const;
      /// Non-mutable access to the chi squared value
      DoubleReal getChiSquared() const;
      /// Non-mutable access to relelative standard deviation
      DoubleReal getRSD() const;

protected:

      /// The intercept of the fitted line with the y-axis
      double intercept_;
      /// The slope of the fitted line
      double slope_;
      /// The intercept of the fitted line with the x-axis
      double x_intercept_;
      /// The lower bound of the confidence intervall
      double lower_;
      /// The upper bound of the confidence intervall
      double upper_;
      /// The value of the t-statistic
      double t_star_;
      /// The squared correlation coefficient (Pearson)
      double r_squared_;
      /// The standard deviation of the residuals
      double stand_dev_residuals_;
      /// Mean of residuals
      double mean_residuals_;
      /// The standard error of the slope
      double stand_error_slope_;
      /// The value of the Chi Squared statistic
      double chi_squared_;
      /// the relative standard deviation
      double rsd_;


      /// Computes the goodness of the fitted regression line
      void computeGoodness_(double * X, double * Y, int N, double confidence_interval_P);

      /// Copies the distance(x_begin,x_end) elements starting at x_begin and y_begin into the arrays x_array and y_array
      template <typename Iterator>
      void iteratorRange2Arrays_(Iterator x_begin, Iterator x_end, Iterator y_begin, double * x_array, double * y_array);

      /// Copy the distance(x_begin,x_end) elements starting at  x_begin, y_begin and w_begin into the arrays x_array, y_array and w_array
      template <typename Iterator>
      void iteratorRange3Arrays_(Iterator x_begin, Iterator x_end, Iterator y_begin, Iterator w_begin, double * x_array, double * y_array, double * w_array);

private:

      /// Not implemented
      LinearRegression(const LinearRegression & arg);
      /// Not implemented
      LinearRegression & operator=(const LinearRegression & arg);
    };

    template <typename Iterator>
    void LinearRegression::computeRegression(double confidence_interval_P, Iterator x_begin, Iterator x_end, Iterator y_begin)
    {
      int N = int(distance(x_begin, x_end));

      double * X = new double[N];
      double * Y = new double[N];
      iteratorRange2Arrays_(x_begin, x_end, y_begin, X, Y);

      double cov00, cov01, cov11;

      // Compute the unweighted linear fit.
      // Get the intercept and the slope of the regression Y_hat=intercept_+slope_*X
      // and the value of Chi squared, the covariances of the intercept and the slope
      int error = gsl_fit_linear(X, 1, Y, 1, N, &intercept_, &slope_, &cov00, &cov01, &cov11, &chi_squared_);

      if (!error)
      {
        computeGoodness_(X, Y, N, confidence_interval_P);
      }

      delete[] X;
      delete[] Y;

      if (error)
      {
        throw Exception::UnableToFit(__FILE__, __LINE__, __PRETTY_FUNCTION__, "UnableToFit-LinearRegression", "Could not fit a linear model to the data");
      }
    }

    template <typename Iterator>
    void LinearRegression::computeRegressionNoIntercept(double confidence_interval_P, Iterator x_begin, Iterator x_end, Iterator y_begin)
    {
      int N = int(distance(x_begin, x_end));

      double * X = new double[N];
      double * Y = new double[N];
      iteratorRange2Arrays_(x_begin, x_end, y_begin, X, Y);

      double cov;

      // Compute the linear fit.
      // Get the intercept and the slope of the regression Y_hat=intercept_+slope_*X
      // and the value of Chi squared, the covariances of the intercept and the slope
      int error = gsl_fit_mul(X, 1, Y, 1, N, &slope_, &cov, &chi_squared_);
      intercept_ = 0.0;

      if (!error)
      {
        computeGoodness_(X, Y, N, confidence_interval_P);
      }

      delete[] X;
      delete[] Y;

      if (error)
      {
        throw Exception::UnableToFit(__FILE__, __LINE__, __PRETTY_FUNCTION__, "UnableToFit-LinearRegression", "Could not fit a linear model to the data");
      }
    }

    template <typename Iterator>
    void LinearRegression::computeRegressionWeighted(double confidence_interval_P, Iterator x_begin, Iterator x_end, Iterator y_begin, Iterator w_begin)
    {
      int N = int(distance(x_begin, x_end));

      double * X = new double[N];
      double * Y = new double[N];
      double * W = new double[N];
      iteratorRange3Arrays_(x_begin, x_end, y_begin, w_begin, X, Y, W);

      double cov00, cov01, cov11;

      // Compute the weighted linear fit.
      // Get the intercept and the slope of the regression Y_hat=intercept_+slope_*X
      // and the value of Chi squared, the covariances of the intercept and the slope
      int error = gsl_fit_wlinear(X, 1, W, 1, Y, 1, N, &intercept_, &slope_, &cov00, &cov01, &cov11, &chi_squared_);

      if (!error)
      {
        computeGoodness_(X, Y, N, confidence_interval_P);
      }

      delete[] X;
      delete[] Y;
      delete[] W;

      if (error)
      {
        throw Exception::UnableToFit(__FILE__, __LINE__, __PRETTY_FUNCTION__, "UnableToFit-LinearRegression", "Could not fit a linear model to the data");
      }
    }

    template <typename Iterator>
    void LinearRegression::iteratorRange2Arrays_(Iterator x_begin, Iterator x_end, Iterator y_begin, double * x_array, double * y_array)
    {
      int i = 0;
      while (x_begin < x_end)
      {
        x_array[i] = *x_begin;
        y_array[i] = *y_begin;
        ++x_begin;
        ++y_begin;
        ++i;
      }
    }

    template <typename Iterator>
    void LinearRegression::iteratorRange3Arrays_(Iterator x_begin, Iterator x_end, Iterator y_begin, Iterator w_begin, double * x_array, double * y_array, double * w_array)
    {
      int i = 0;
      while (x_begin < x_end)
      {
        x_array[i] = *x_begin;
        y_array[i] = *y_begin;
        w_array[i] = *w_begin;
        ++x_begin;
        ++y_begin;
        ++w_begin;
        ++i;
      }
    }

  } // namespace Math
} // namespace OpenMS


#endif