/usr/include/OpenMS/SIMULATION/RawMSSignalSimulation.h is in libopenms-dev 1.11.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 | // --------------------------------------------------------------------------
// OpenMS -- Open-Source Mass Spectrometry
// --------------------------------------------------------------------------
// Copyright The OpenMS Team -- Eberhard Karls University Tuebingen,
// ETH Zurich, and Freie Universitaet Berlin 2002-2013.
//
// This software is released under a three-clause BSD license:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of any author or any participating institution
// may be used to endorse or promote products derived from this software
// without specific prior written permission.
// For a full list of authors, refer to the file AUTHORS.
// --------------------------------------------------------------------------
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL ANY OF THE AUTHORS OR THE CONTRIBUTING
// INSTITUTIONS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
// OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// --------------------------------------------------------------------------
// $Maintainer: Stephan Aiche$
// $Authors: Stephan Aiche, Chris Bielow$
// --------------------------------------------------------------------------
#ifndef OPENMS_SIMULATION_RAWMSSIGNALSIMULATION_H
#define OPENMS_SIMULATION_RAWMSSIGNALSIMULATION_H
#include <OpenMS/DATASTRUCTURES/DefaultParamHandler.h>
#include <OpenMS/CONCEPT/ProgressLogger.h>
#include <OpenMS/SIMULATION/SimTypes.h>
#include <OpenMS/SIMULATION/EGHModel.h>
#include <OpenMS/TRANSFORMATIONS/FEATUREFINDER/ProductModel.h>
namespace OpenMS
{
class IsotopeModel;
/**
@brief Simulates MS signals for a given set of peptides
Simulates MS signals for a given set of peptides, with charge annotation,
given detectabilities, predicted retention times and charge values.
@htmlinclude OpenMS_RawMSSignalSimulation.parameters
@ingroup Simulation
*/
class OPENMS_DLLAPI RawMSSignalSimulation :
public DefaultParamHandler,
public ProgressLogger
{
public:
/** @name Constructors and Destructors
*/
//@{
/// Constructor taking a random generator
RawMSSignalSimulation(const SimRandomNumberGenerator & rng);
/// Copy constructor
RawMSSignalSimulation(const RawMSSignalSimulation & source);
/// Destructor
virtual ~RawMSSignalSimulation();
//@}
RawMSSignalSimulation & operator=(const RawMSSignalSimulation & source);
/// load the contaminants from contaminants:file param
/// You do not have to call this function before calling generateRawSignals(), but it might
/// be useful to check if the contaminant file is valid
void loadContaminants();
/// fill experiment with signals and noise
void generateRawSignals(FeatureMapSim & features, MSSimExperiment & experiment, MSSimExperiment & experiment_ct, FeatureMapSim & contaminants);
protected:
enum IONIZATIONMETHOD {IM_ESI = 0, IM_MALDI = 1, IM_ALL = 2};
enum PROFILESHAPE {RT_RECTANGULAR, RT_GAUSSIAN};
enum RESOLUTIONMODEL {RES_CONSTANT, RES_LINEAR, RES_SQRT};
/// Default constructor
RawMSSignalSimulation();
/// Synchronize members with param class
void updateMembers_();
/// Set default parameters
void setDefaultParams_();
/**
@brief Add a 1D signal for a single feature
@param feature The feature which should be simulated
@param experiment The experiment to which the simulated signals should be added
@param experiment_ct Ground truth for picked peaks
*/
void add1DSignal_(Feature & feature, MSSimExperiment & experiment, MSSimExperiment & experiment_ct);
/**
@brief Add a 2D signal for a single feature
@param feature The feature which should be simulated
@param experiment The experiment to which the simulated signals should be added
@param experiment_ct Ground truth for picked peaks
*/
void add2DSignal_(Feature & feature, MSSimExperiment & experiment, MSSimExperiment & experiment_ct);
/**
@brief Samples signals for the given 1D model
@param iso The isotope model from which the signals will be sampled
@param mz_start Start coordinate (in m/z dimension) of the region where the signals will be sampled
@param mz_end End coordinate (in m/z dimension) of the region where the signals will be sampled
@param experiment Experiment to which the sampled signals will be added
@param experiment_ct Experiment to which the centroided Ground Truth sampled signals will be added
@param activeFeature The current feature that is simulated
*/
void samplePeptideModel1D_(const IsotopeModel & iso,
const SimCoordinateType mz_start,
const SimCoordinateType mz_end,
MSSimExperiment & experiment,
MSSimExperiment & experiment_ct,
Feature & activeFeature);
/**
@brief Samples signals for the given 2D model
@param pm The product model from which the signals will be sampled
@param mz_start Start coordinate (in m/z dimension) of the region where the signals will be sampled
@param mz_end End coordinate (in m/z dimension) of the region where the signals will be sampled
@param rt_start Start coordinate (in rt dimension) of the region where the signals will be sampled
@param rt_end End coordinate (in rt dimension) of the region where the signals will be sampled
@param experiment Experiment to which the sampled signals will be added
@param experiment_ct Experiment to which the centroided Ground Truth sampled signals will be added
@param activeFeature The current feature that is simulated
*/
void samplePeptideModel2D_(const ProductModel<2> & pm,
const SimCoordinateType mz_start,
const SimCoordinateType mz_end,
SimCoordinateType rt_start,
SimCoordinateType rt_end,
MSSimExperiment & experiment,
MSSimExperiment & experiment_ct,
Feature & activeFeature);
/**
@brief Add the correct Elution profile to the passed ProductModel
*/
void chooseElutionProfile_(EGHModel * const elutionmodel, Feature & feature, const double scale, const DoubleReal rt_sampling_rate, const MSSimExperiment & experiment);
/**
@brief build contaminant feature map
*/
void createContaminants_(FeatureMapSim & contaminants, MSSimExperiment & exp, MSSimExperiment & exp_ct);
/// Add shot noise to the experiment
void addShotNoise_(MSSimExperiment & experiment, SimCoordinateType minimal_mz_measurement_limit, SimCoordinateType maximal_mz_measurement_limit);
/// Add white noise to the experiment
void addWhiteNoise_(MSSimExperiment & experiment);
/// Add detector noise to the experiment
void addDetectorNoise_(MSSimExperiment & experiment);
/// Add a base line to the experiment
void addBaseLine_(MSSimExperiment & experiment, SimCoordinateType minimal_mz_measurement_limit);
/// get the mz grid where all m/z values will be mapped to
void getSamplingGrid_(std::vector<SimCoordinateType> & grid, const SimCoordinateType mz_min, const SimCoordinateType mz_max, const Int step_Da);
/// Compress signales in a single RT scan (to merge signals which were sampled overlapping)
void compressSignals_(MSSimExperiment & experiment);
/// number of points sampled per peak's FWHM
Int sampling_points_per_FWHM_;
/// Mean of peak m/z error
SimCoordinateType mz_error_mean_;
/// Standard deviation of peak m/z error
SimCoordinateType mz_error_stddev_;
/**
* @brief Computes a rescaled feature intensity based on the set parameters for feature intensity scaling and the passed parameter @p natural_scaling_factor.
*
* @param feature_intensity Intensity of the current feature.
* @param natural_scaling_factor Additional scaling factor used by some of the sampling models.
*
* @return Rescaled feature intensity.
*/
SimIntensityType getFeatureScaledIntensity_(const SimIntensityType feature_intensity, const SimIntensityType natural_scaling_factor);
/**
@brief Compute resolution at a given m/z given a base resolution and how it degrades with increasing m/z
@param query_mz The m/z value where the resolution should be estimated
@param resolution The resolution at 400 Th
@param model The model describing how resolution behaves, i.e.
- RES_CONSTANT: resolution does not change with m/z (this will just return @p resolution)<br>
- RES_LINEAR: resolution decreases linear with m/z, i.e. at 800 Th, it will have 50% of original<br>
- RES_SQRT: the resolution decreases with square root of mass, i.e. at 1600 Th, it will have 50% of original (sqrt(400) = sqrt(1600)*0.5)
*/
DoubleReal getResolution_(const DoubleReal query_mz, const DoubleReal resolution, const RESOLUTIONMODEL model) const;
/**
@brief compute the peak's SD (Gaussian) at a given m/z (internally the resolution model is used)
*/
DoubleReal getPeakWidth_(const DoubleReal mz, const bool is_gaussian) const;
/// Scaling factor of peak intensities
SimIntensityType intensity_scale_;
/// Standard deviation of peak intensity scaling
SimIntensityType intensity_scale_stddev_;
/// model of how resolution behaves with increasing m/z
RESOLUTIONMODEL res_model_;
/// base resolution at 400 Th
DoubleReal res_base_;
/// m/z sampling grid for all signals
std::vector<SimCoordinateType> grid_;
/// Random number generator
SimRandomNumberGenerator const * rnd_gen_;
struct ContaminantInfo
{
String name;
EmpiricalFormula sf;
DoubleReal rt_start, rt_end, intensity;
Int q;
PROFILESHAPE shape;
IONIZATIONMETHOD im;
};
std::vector<ContaminantInfo> contaminants_;
/**
@p threaded_random_numbers keeps a set of random numbers for each thread simulating a feature.
*/
std::vector<std::vector<double> > threaded_random_numbers_;
/**
Indicates which random numbers each thread has used already and if the random number pool
should be rebuild.
*/
std::vector<Size> threaded_random_numbers_index_;
static const Size THREADED_RANDOM_NUMBER_POOL_SIZE_ = 500;
bool contaminants_loaded_;
};
}
#endif
|