/usr/include/osg/Quat is in libopenscenegraph-dev 3.2.1-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 | /* -*-c++-*- OpenSceneGraph - Copyright (C) 1998-2006 Robert Osfield
*
* This library is open source and may be redistributed and/or modified under
* the terms of the OpenSceneGraph Public License (OSGPL) version 0.0 or
* (at your option) any later version. The full license is in LICENSE file
* included with this distribution, and on the openscenegraph.org website.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* OpenSceneGraph Public License for more details.
*/
#ifndef OSG_QUAT
#define OSG_QUAT 1
#include <osg/Export>
#include <osg/Vec3f>
#include <osg/Vec4f>
#include <osg/Vec3d>
#include <osg/Vec4d>
namespace osg {
class Matrixf;
class Matrixd;
/** A quaternion class. It can be used to represent an orientation in 3D space.*/
class OSG_EXPORT Quat
{
public:
typedef double value_type;
value_type _v[4]; // a four-vector
inline Quat() { _v[0]=0.0; _v[1]=0.0; _v[2]=0.0; _v[3]=1.0; }
inline Quat( value_type x, value_type y, value_type z, value_type w )
{
_v[0]=x;
_v[1]=y;
_v[2]=z;
_v[3]=w;
}
inline Quat( const Vec4f& v )
{
_v[0]=v.x();
_v[1]=v.y();
_v[2]=v.z();
_v[3]=v.w();
}
inline Quat( const Vec4d& v )
{
_v[0]=v.x();
_v[1]=v.y();
_v[2]=v.z();
_v[3]=v.w();
}
inline Quat( value_type angle, const Vec3f& axis)
{
makeRotate(angle,axis);
}
inline Quat( value_type angle, const Vec3d& axis)
{
makeRotate(angle,axis);
}
inline Quat( value_type angle1, const Vec3f& axis1,
value_type angle2, const Vec3f& axis2,
value_type angle3, const Vec3f& axis3)
{
makeRotate(angle1,axis1,angle2,axis2,angle3,axis3);
}
inline Quat( value_type angle1, const Vec3d& axis1,
value_type angle2, const Vec3d& axis2,
value_type angle3, const Vec3d& axis3)
{
makeRotate(angle1,axis1,angle2,axis2,angle3,axis3);
}
inline Quat& operator = (const Quat& v) { _v[0]=v._v[0]; _v[1]=v._v[1]; _v[2]=v._v[2]; _v[3]=v._v[3]; return *this; }
inline bool operator == (const Quat& v) const { return _v[0]==v._v[0] && _v[1]==v._v[1] && _v[2]==v._v[2] && _v[3]==v._v[3]; }
inline bool operator != (const Quat& v) const { return _v[0]!=v._v[0] || _v[1]!=v._v[1] || _v[2]!=v._v[2] || _v[3]!=v._v[3]; }
inline bool operator < (const Quat& v) const
{
if (_v[0]<v._v[0]) return true;
else if (_v[0]>v._v[0]) return false;
else if (_v[1]<v._v[1]) return true;
else if (_v[1]>v._v[1]) return false;
else if (_v[2]<v._v[2]) return true;
else if (_v[2]>v._v[2]) return false;
else return (_v[3]<v._v[3]);
}
/* ----------------------------------
Methods to access data members
---------------------------------- */
inline Vec4d asVec4() const
{
return Vec4d(_v[0], _v[1], _v[2], _v[3]);
}
inline Vec3d asVec3() const
{
return Vec3d(_v[0], _v[1], _v[2]);
}
inline void set(value_type x, value_type y, value_type z, value_type w)
{
_v[0]=x;
_v[1]=y;
_v[2]=z;
_v[3]=w;
}
inline void set(const osg::Vec4f& v)
{
_v[0]=v.x();
_v[1]=v.y();
_v[2]=v.z();
_v[3]=v.w();
}
inline void set(const osg::Vec4d& v)
{
_v[0]=v.x();
_v[1]=v.y();
_v[2]=v.z();
_v[3]=v.w();
}
void set(const Matrixf& matrix);
void set(const Matrixd& matrix);
void get(Matrixf& matrix) const;
void get(Matrixd& matrix) const;
inline value_type & operator [] (int i) { return _v[i]; }
inline value_type operator [] (int i) const { return _v[i]; }
inline value_type & x() { return _v[0]; }
inline value_type & y() { return _v[1]; }
inline value_type & z() { return _v[2]; }
inline value_type & w() { return _v[3]; }
inline value_type x() const { return _v[0]; }
inline value_type y() const { return _v[1]; }
inline value_type z() const { return _v[2]; }
inline value_type w() const { return _v[3]; }
/** return true if the Quat represents a zero rotation, and therefore can be ignored in computations.*/
bool zeroRotation() const { return _v[0]==0.0 && _v[1]==0.0 && _v[2]==0.0 && _v[3]==1.0; }
/* -------------------------------------------------------------
BASIC ARITHMETIC METHODS
Implemented in terms of Vec4s. Some Vec4 operators, e.g.
operator* are not appropriate for quaternions (as
mathematical objects) so they are implemented differently.
Also define methods for conjugate and the multiplicative inverse.
------------------------------------------------------------- */
/// Multiply by scalar
inline const Quat operator * (value_type rhs) const
{
return Quat(_v[0]*rhs, _v[1]*rhs, _v[2]*rhs, _v[3]*rhs);
}
/// Unary multiply by scalar
inline Quat& operator *= (value_type rhs)
{
_v[0]*=rhs;
_v[1]*=rhs;
_v[2]*=rhs;
_v[3]*=rhs;
return *this; // enable nesting
}
/// Binary multiply
inline const Quat operator*(const Quat& rhs) const
{
return Quat( rhs._v[3]*_v[0] + rhs._v[0]*_v[3] + rhs._v[1]*_v[2] - rhs._v[2]*_v[1],
rhs._v[3]*_v[1] - rhs._v[0]*_v[2] + rhs._v[1]*_v[3] + rhs._v[2]*_v[0],
rhs._v[3]*_v[2] + rhs._v[0]*_v[1] - rhs._v[1]*_v[0] + rhs._v[2]*_v[3],
rhs._v[3]*_v[3] - rhs._v[0]*_v[0] - rhs._v[1]*_v[1] - rhs._v[2]*_v[2] );
}
/// Unary multiply
inline Quat& operator*=(const Quat& rhs)
{
value_type x = rhs._v[3]*_v[0] + rhs._v[0]*_v[3] + rhs._v[1]*_v[2] - rhs._v[2]*_v[1];
value_type y = rhs._v[3]*_v[1] - rhs._v[0]*_v[2] + rhs._v[1]*_v[3] + rhs._v[2]*_v[0];
value_type z = rhs._v[3]*_v[2] + rhs._v[0]*_v[1] - rhs._v[1]*_v[0] + rhs._v[2]*_v[3];
_v[3] = rhs._v[3]*_v[3] - rhs._v[0]*_v[0] - rhs._v[1]*_v[1] - rhs._v[2]*_v[2];
_v[2] = z;
_v[1] = y;
_v[0] = x;
return (*this); // enable nesting
}
/// Divide by scalar
inline Quat operator / (value_type rhs) const
{
value_type div = 1.0/rhs;
return Quat(_v[0]*div, _v[1]*div, _v[2]*div, _v[3]*div);
}
/// Unary divide by scalar
inline Quat& operator /= (value_type rhs)
{
value_type div = 1.0/rhs;
_v[0]*=div;
_v[1]*=div;
_v[2]*=div;
_v[3]*=div;
return *this;
}
/// Binary divide
inline const Quat operator/(const Quat& denom) const
{
return ( (*this) * denom.inverse() );
}
/// Unary divide
inline Quat& operator/=(const Quat& denom)
{
(*this) = (*this) * denom.inverse();
return (*this); // enable nesting
}
/// Binary addition
inline const Quat operator + (const Quat& rhs) const
{
return Quat(_v[0]+rhs._v[0], _v[1]+rhs._v[1],
_v[2]+rhs._v[2], _v[3]+rhs._v[3]);
}
/// Unary addition
inline Quat& operator += (const Quat& rhs)
{
_v[0] += rhs._v[0];
_v[1] += rhs._v[1];
_v[2] += rhs._v[2];
_v[3] += rhs._v[3];
return *this; // enable nesting
}
/// Binary subtraction
inline const Quat operator - (const Quat& rhs) const
{
return Quat(_v[0]-rhs._v[0], _v[1]-rhs._v[1],
_v[2]-rhs._v[2], _v[3]-rhs._v[3] );
}
/// Unary subtraction
inline Quat& operator -= (const Quat& rhs)
{
_v[0]-=rhs._v[0];
_v[1]-=rhs._v[1];
_v[2]-=rhs._v[2];
_v[3]-=rhs._v[3];
return *this; // enable nesting
}
/** Negation operator - returns the negative of the quaternion.
Basically just calls operator - () on the Vec4 */
inline const Quat operator - () const
{
return Quat (-_v[0], -_v[1], -_v[2], -_v[3]);
}
/// Length of the quaternion = sqrt( vec . vec )
value_type length() const
{
return sqrt( _v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2] + _v[3]*_v[3]);
}
/// Length of the quaternion = vec . vec
value_type length2() const
{
return _v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2] + _v[3]*_v[3];
}
/// Conjugate
inline Quat conj () const
{
return Quat( -_v[0], -_v[1], -_v[2], _v[3] );
}
/// Multiplicative inverse method: q^(-1) = q^*/(q.q^*)
inline const Quat inverse () const
{
return conj() / length2();
}
/* --------------------------------------------------------
METHODS RELATED TO ROTATIONS
Set a quaternion which will perform a rotation of an
angle around the axis given by the vector (x,y,z).
Should be written to also accept an angle and a Vec3?
Define Spherical Linear interpolation method also
Not inlined - see the Quat.cpp file for implementation
-------------------------------------------------------- */
void makeRotate( value_type angle,
value_type x, value_type y, value_type z );
void makeRotate ( value_type angle, const Vec3f& vec );
void makeRotate ( value_type angle, const Vec3d& vec );
void makeRotate ( value_type angle1, const Vec3f& axis1,
value_type angle2, const Vec3f& axis2,
value_type angle3, const Vec3f& axis3);
void makeRotate ( value_type angle1, const Vec3d& axis1,
value_type angle2, const Vec3d& axis2,
value_type angle3, const Vec3d& axis3);
/** Make a rotation Quat which will rotate vec1 to vec2.
Generally take a dot product to get the angle between these
and then use a cross product to get the rotation axis
Watch out for the two special cases when the vectors
are co-incident or opposite in direction.*/
void makeRotate( const Vec3f& vec1, const Vec3f& vec2 );
/** Make a rotation Quat which will rotate vec1 to vec2.
Generally take a dot product to get the angle between these
and then use a cross product to get the rotation axis
Watch out for the two special cases of when the vectors
are co-incident or opposite in direction.*/
void makeRotate( const Vec3d& vec1, const Vec3d& vec2 );
void makeRotate_original( const Vec3d& vec1, const Vec3d& vec2 );
/** Return the angle and vector components represented by the quaternion.*/
void getRotate ( value_type & angle, value_type & x, value_type & y, value_type & z ) const;
/** Return the angle and vector represented by the quaternion.*/
void getRotate ( value_type & angle, Vec3f& vec ) const;
/** Return the angle and vector represented by the quaternion.*/
void getRotate ( value_type & angle, Vec3d& vec ) const;
/** Spherical Linear Interpolation.
As t goes from 0 to 1, the Quat object goes from "from" to "to". */
void slerp ( value_type t, const Quat& from, const Quat& to);
/** Rotate a vector by this quaternion.*/
Vec3f operator* (const Vec3f& v) const
{
// nVidia SDK implementation
Vec3f uv, uuv;
Vec3f qvec(_v[0], _v[1], _v[2]);
uv = qvec ^ v;
uuv = qvec ^ uv;
uv *= ( 2.0f * _v[3] );
uuv *= 2.0f;
return v + uv + uuv;
}
/** Rotate a vector by this quaternion.*/
Vec3d operator* (const Vec3d& v) const
{
// nVidia SDK implementation
Vec3d uv, uuv;
Vec3d qvec(_v[0], _v[1], _v[2]);
uv = qvec ^ v;
uuv = qvec ^ uv;
uv *= ( 2.0f * _v[3] );
uuv *= 2.0f;
return v + uv + uuv;
}
protected:
}; // end of class prototype
} // end of namespace
#endif
|