/usr/include/ptlib/array.h is in libpt-dev 2.10.10~dfsg-4.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 | /*
* array.h
*
* Linear Array Container classes.
*
* Portable Tools Library
*
* Copyright (c) 1993-1998 Equivalence Pty. Ltd.
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.0 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS"
* basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
* the License for the specific language governing rights and limitations
* under the License.
*
* The Original Code is Portable Windows Library.
*
* The Initial Developer of the Original Code is Equivalence Pty. Ltd.
*
* Portions are Copyright (C) 1993 Free Software Foundation, Inc.
* All Rights Reserved.
*
* Contributor(s): ______________________________________.
*
* $Revision: 25387 $
* $Author: rjongbloed $
* $Date: 2011-03-22 22:51:09 -0500 (Tue, 22 Mar 2011) $
*/
#ifndef PTLIB_ARRAY_H
#define PTLIB_ARRAY_H
#ifdef P_USE_PRAGMA
#pragma interface
#endif
#include <ptlib/contain.h>
///////////////////////////////////////////////////////////////////////////////
// The abstract array class
/**This class contains a variable length array of arbitrary memory blocks.
These can be anything from individual bytes to large structures. Note that
that does \b not include class objects that require construction or
destruction. Elements in this array will not execute the contructors or
destructors of objects.
An abstract array consists of a linear block of memory sufficient to hold
PContainer::GetSize() elements of <code>elementSize</code> bytes
each. The memory block itself will automatically be resized when required
and freed when no more references to it are present.
The PAbstractArray class would very rarely be descended from directly by
the user. The <code>PBASEARRAY</code> macro would normally be used to create
a class and any new classes descended from that. That will instantiate the
template based on <code>PBaseArray</code> or directly declare and define a class
(using inline functions) if templates are not being used.
The <code>PBaseArray</code> class or <code>PBASEARRAY</code> macro will define the correctly
typed operators for pointer access (operator const T *) and subscript
access (operator[]).
*/
class PAbstractArray : public PContainer
{
PCONTAINERINFO(PAbstractArray, PContainer);
public:
/**@name Construction */
//@{
/**Create a new dynamic array of \p initalSize elements of
\p elementSizeInBytes bytes each. The array memory is
initialised to zeros.
If the initial size is zero then no memory is allocated. Note that the
internal pointer is set to NULL, not to a pointer to zero bytes of
memory. This can be an important distinction when the pointer is
obtained via an operator created in the <code>PBASEARRAY</code> macro.
*/
PAbstractArray(
PINDEX elementSizeInBytes, ///< Size of each element in the array. This must be > 0 or the
///< constructor will assert.
PINDEX initialSize = 0 ///< Number of elements to allocate initially.
);
/**Create a new dynamic array of \p bufferSizeInElements
elements of \p elementSizeInBytes bytes each. The contents of
the memory pointed to by buffer is then used to initialise the newly
allocated array.
If the initial size is zero then no memory is allocated. Note that the
internal pointer is set to NULL, not to a pointer to zero bytes of
memory. This can be an important distinction when the pointer is
obtained via an operator created in the <code>PBASEARRAY</code> macro.
If the \p dynamicAllocation parameter is <code>false</code> then the
pointer is used directly by the container. It will not be copied to a
dynamically allocated buffer. If the <code>SetSize()</code> function is used to
change the size of the buffer, the object will be converted to a
dynamic form with the contents of the static buffer copied to the
allocated buffer.
*/
PAbstractArray(
PINDEX elementSizeInBytes, ///< Size of each element in the array. This must be > 0 or the
///< constructor will assert.
const void *buffer, ///< Pointer to an array of elements.
PINDEX bufferSizeInElements, ///< Number of elements pointed to by buffer.
PBoolean dynamicAllocation ///< Buffer is copied and dynamically allocated.
);
//@}
/**@name Overrides from class PObject */
//@{
/**Output the contents of the object to the stream. The exact output is
dependent on the exact semantics of the descendent class. This is
primarily used by the standard <code>operator<<</code> function.
The default behaviour is to print the class name.
*/
virtual void PrintOn(
ostream &strm // Stream to print the object into.
) const;
/**Input the contents of the object from the stream. The exact input is
dependent on the exact semantics of the descendent class. This is
primarily used by the standard <code>operator>></code> function.
The default behaviour is to do nothing.
*/
virtual void ReadFrom(
istream &strm // Stream to read the objects contents from.
);
/**Get the relative rank of the two arrays. The following algorithm is
employed for the comparison:
\li <code>EqualTo</code> if the two array memory blocks are identical in
length and contents.
\li <code>LessThan</code> if the array length is less than the
\p obj parameters array length.
\li <code>GreaterThan</code> if the array length is greater than the
\p obj parameters array length.
If the array sizes are identical then the memcmp()
function is used to rank the two arrays.
@return
Comparison of the two objects, <code>EqualTo</code> for same,
<code>LessThan</code> for \p obj logically less than the
object and <code>GreaterThan</code> for \p obj logically
greater than the object.
*/
virtual Comparison Compare(
const PObject & obj ///< Other <code>PAbstractArray</code> to compare against.
) const;
//@}
/**@name Overrides from class PContainer */
//@{
/**Set the size of the array in elements. A new array may be allocated to
accomodate the new number of elements. If the array increases in size
then the new bytes are initialised to zero. If the array is made smaller
then the data beyond the new size is lost.
@return
<code>true</code> if the memory for the array was allocated successfully.
*/
virtual PBoolean SetSize(
PINDEX newSize ///< New size of the array in elements.
);
//@}
/**@name New functions for class */
//@{
/**Attach a pointer to a static block to the base array type. The pointer
is used directly and will not be copied to a dynamically allocated
buffer. If the <code>SetSize()</code> function is used to change the size of the
buffer, the object will be converted to a dynamic form with the
contents of the static buffer copied to the allocated buffer.
Any dynamically allocated buffer will be freed.
*/
void Attach(
const void *buffer, ///< Pointer to an array of elements.
PINDEX bufferSize ///< Number of elements pointed to by buffer.
);
/**Get a pointer to the internal array and assure that it is of at least
the specified size. This is useful when the array contents are being
set by some external or system function eg file read.
It is unsafe to assume that the pointer is valid for very long after
return from this function. The array may be resized or otherwise
changed and the pointer returned invalidated. It should be used for
simple calls to atomic functions, or very careful examination of the
program logic must be performed.
@return
Pointer to the array memory.
*/
void * GetPointer(
PINDEX minSize = 1 ///< Minimum size the array must be.
);
/**Concatenate one array to the end of this array.
This function will allocate a new array large enough for the existing
contents and the contents of the parameter. The parameters contents is then
copied to the end of the existing array.
Note this does nothing and returns <code>false</code> if the target array is not
dynamically allocated, or if the two arrays are of base elements of
different sizes.
@return
<code>true</code> if the memory allocation succeeded.
*/
PBoolean Concatenate(
const PAbstractArray & array ///< Array to concatenate.
);
//@}
protected:
PBoolean InternalSetSize(PINDEX newSize, PBoolean force);
virtual void PrintElementOn(
ostream & stream,
PINDEX index
) const;
virtual void ReadElementFrom(
istream & stream,
PINDEX index
);
PAbstractArray(
PContainerReference & reference,
PINDEX elementSizeInBytes
);
/// Size of an element in bytes.
PINDEX elementSize;
/// Pointer to the allocated block of memory.
char * theArray;
/// Flag indicating the array was allocated on the heap.
PBoolean allocatedDynamically;
friend class PArrayObjects;
};
///////////////////////////////////////////////////////////////////////////////
// An array of some base type
/**This template class maps the <code>PAbstractArray</code> to a specific element type. The
functions in this class primarily do all the appropriate casting of types.
Note that if templates are not used the <code>PBASEARRAY</code> macro will
simulate the template instantiation.
The following classes are instantiated automatically for the basic scalar
types:
\li <code>PCharArray</code>
\li <code>PBYTEArray</code>
\li <code>PShortArray</code>
\li <code>PWORDArray</code>
\li <code>PIntArray</code>
\li <code>PUnsignedArray</code>
\li <code>PLongArray</code>
\li <code>PDWORDArray</code>
*/
template <class T> class PBaseArray : public PAbstractArray
{
PCLASSINFO(PBaseArray, PAbstractArray);
public:
/**@name Construction */
//@{
/**Construct a new dynamic array of elements of the specified type. The
array is initialised to all zero bytes. Note that this may not be
logically equivalent to the zero value for the type, though this would
be very rare.
*/
PBaseArray(
PINDEX initialSize = 0 ///< Initial number of elements in the array.
) : PAbstractArray(sizeof(T), initialSize) { }
/**Construct a new dynamic array of elements of the specified type.
*/
PBaseArray(
T const * buffer, ///< Pointer to an array of the elements of type \b T.
PINDEX length, ///< Number of elements pointed to by \p buffer.
PBoolean dynamic = true ///< Buffer is copied and dynamically allocated.
) : PAbstractArray(sizeof(T), buffer, length, dynamic) { }
//@}
/**@name Overrides from class PObject */
//@{
/** Clone the object.
*/
virtual PObject * Clone() const
{
return PNEW PBaseArray<T>(*this, GetSize());
}
//@}
/**@name Overrides from class PContainer */
//@{
/**Set the specific element in the array. The array will automatically
expand, if necessary, to fit the new element in.
@return
<code>true</code> if new memory for the array was successfully allocated.
*/
PBoolean SetAt(
PINDEX index, ///< Position in the array to set the new value.
T val ///< Value to set in the array.
) {
return SetMinSize(index+1) && val==(((T *)theArray)[index] = val);
}
/**Get a value from the array. If the \p index is beyond the end
of the allocated array then a zero value is returned.
@return
Value at the array position.
*/
T GetAt(
PINDEX index ///< Position on the array to get value from.
) const {
PASSERTINDEX(index);
return index < GetSize() ? ((T *)theArray)[index] : (T)0;
}
/**Attach a pointer to a static block to the base array type. The pointer
is used directly and will not be copied to a dynamically allocated
buffer. If the <code>SetSize()</code> function is used to change the size of the
buffer, the object will be converted to a dynamic form with the
contents of the static buffer copied to the allocated buffer.
Any dynamically allocated buffer will be freed.
*/
void Attach(
const T * buffer, ///< Pointer to an array of elements.
PINDEX bufferSize ///< Number of elements pointed to by buffer.
) {
PAbstractArray::Attach(buffer, bufferSize);
}
/**Get a pointer to the internal array and assure that it is of at least
the specified size. This is useful when the array contents are being
set by some external or system function eg file read.
It is unsafe to assume that the pointer is valid for very long after
return from this function. The array may be resized or otherwise
changed and the pointer returned invalidated. It should be used for
simple calls to atomic functions, or very careful examination of the
program logic must be performed.
@return
Pointer to the array memory.
*/
T * GetPointer(
PINDEX minSize = 0 ///< Minimum size for returned buffer pointer.
) {
return (T *)PAbstractArray::GetPointer(minSize);
}
//@}
/**@name New functions for class */
//@{
/**Get a value from the array. If the \p index is beyond the end
of the allocated array then a zero value is returned.
This is functionally identical to the PContainer::GetAt()
function.
@return
Value at the array position.
*/
T operator[](
PINDEX index ///< Position on the array to get value from.
) const {
return GetAt(index);
}
/**Get a reference to value from the array. If \p index is
beyond the end of the allocated array then the array is expanded. If a
memory allocation failure occurs the function asserts.
This is functionally similar to the <code>SetAt()</code> function and allows
the array subscript to be an lvalue.
@return
Reference to value at the array position.
*/
T & operator[](
PINDEX index ///< Position on the array to get value from.
) {
PASSERTINDEX(index);
PAssert(SetMinSize(index+1), POutOfMemory);
return ((T *)theArray)[index];
}
/**Get a pointer to the internal array. The user may not modify the
contents of this pointer. This is useful when the array contents are
required by some external or system function eg file write.
It is unsafe to assume that the pointer is valid for very long after
return from this function. The array may be resized or otherwise
changed and the pointer returned invalidated. It should be used for
simple calls to atomic functions, or very careful examination of the
program logic must be performed.
@return
Constant pointer to the array memory.
*/
operator T const *() const {
return (T const *)theArray;
}
/**Concatenate one array to the end of this array.
This function will allocate a new array large enough for the existing
contents and the contents of the parameter. The paramters contents is then
copied to the end of the existing array.
Note this does nothing and returns <code>false</code> if the target array is not
dynamically allocated.
@return
<code>true</code> if the memory allocation succeeded.
*/
PBoolean Concatenate(
const PBaseArray & array ///< Other array to concatenate
) {
return PAbstractArray::Concatenate(array);
}
//@}
protected:
virtual void PrintElementOn(
ostream & stream,
PINDEX index
) const {
stream << GetAt(index);
}
PBaseArray(PContainerReference & reference) : PAbstractArray(reference, sizeof(T)) { }
};
/**Declare a dynamic array base type.
This macro is used to declare a descendent of <code>PAbstractArray</code> class,
customised for a particular element type \b T. This macro closes the
class declaration off so no additional members can be added.
If the compilation is using templates then this macro produces a typedef
of the <code>PBaseArray</code> template class.
*/
#define PBASEARRAY(cls, T) typedef PBaseArray<T> cls
/**Begin a declaration of an array of base types.
This macro is used to declare a descendent of <code>PAbstractArray</code> class,
customised for a particular element type \b T.
If the compilation is using templates then this macro produces a descendent
of the <code>PBaseArray</code> template class. If templates are not being used
then the macro defines a set of inline functions to do all casting of types.
The resultant classes have an identical set of functions in either case.
See the <code>PBaseArray</code> and <code>PAbstractArray</code> classes for more
information.
*/
#define PDECLARE_BASEARRAY(cls, T) \
PDECLARE_CLASS(cls, PBaseArray<T>) \
cls(PINDEX initialSize = 0) \
: PBaseArray<T>(initialSize) { } \
cls(PContainerReference & reference) \
: PBaseArray<T>(reference) { } \
cls(T const * buffer, PINDEX length, PBoolean dynamic = true) \
: PBaseArray<T>(buffer, length, dynamic) { } \
virtual PObject * Clone() const \
{ return PNEW cls(*this, GetSize()); } \
/**This template class maps the <code>PAbstractArray</code> to a specific element type. The
functions in this class primarily do all the appropriate casting of types.
Note that if templates are not used the <code>PSCALAR_ARRAY</code> macro will
simulate the template instantiation.
The following classes are instantiated automatically for the basic scalar
types:
\li <code>PBYTEArray</code>
\li <code>PShortArray</code>
\li <code>PWORDArray</code>
\li <code>PIntArray</code>
\li <code>PUnsignedArray</code>
\li <code>PLongArray</code>
\li <code>PDWORDArray</code>
*/
template <class T> class PScalarArray : public PBaseArray<T>
{
public:
/**@name Construction */
//@{
/**Construct a new dynamic array of elements of the specified type. The
array is initialised to all zero bytes. Note that this may not be
logically equivalent to the zero value for the type, though this would
be very rare.
*/
PScalarArray(
PINDEX initialSize = 0 ///< Initial number of elements in the array.
) : PBaseArray<T>(initialSize) { }
/**Construct a new dynamic array of elements of the specified type.
*/
PScalarArray(
T const * buffer, ///< Pointer to an array of the elements of type <b>T</b>.
PINDEX length, ///< Number of elements pointed to by <code>buffer</code>.
PBoolean dynamic = true ///< Buffer is copied and dynamically allocated.
) : PBaseArray<T>(buffer, length, dynamic) { }
//@}
protected:
virtual void ReadElementFrom(
istream & stream,
PINDEX index
) {
T t;
stream >> t;
if (!stream.fail())
this->SetAt(index, t);
}
};
/**Declare a dynamic array base type.
This macro is used to declare a descendent of <code>PAbstractArray</code> class,
customised for a particular element type \b T. This macro closes the
class declaration off so no additional members can be added.
If the compilation is using templates then this macro produces a typedef
of the <code>PBaseArray</code> template class.
*/
#define PSCALAR_ARRAY(cls, T) typedef PScalarArray<T> cls
/// Array of characters.
#ifdef DOC_PLUS_PLUS
class PCharArray : public PBaseArray {
public:
/**@name Construction */
//@{
/**Construct a new dynamic array of char.
The array is initialised to all zero bytes.
*/
PCharArray(
PINDEX initialSize = 0 ///< Initial number of elements in the array.
);
/**Construct a new dynamic array of char.
*/
PCharArray(
char const * buffer, ///< Pointer to an array of chars.
PINDEX length, ///< Number of elements pointed to by \p buffer.
PBoolean dynamic = true ///< Buffer is copied and dynamically allocated.
);
//@}
#else
PDECLARE_BASEARRAY(PCharArray, char);
#endif
public:
/**@name Overrides from class PObject */
//@{
/// Print the array
virtual void PrintOn(
ostream & strm ///< Stream to output to.
) const;
/// Read the array
virtual void ReadFrom(
istream &strm // Stream to read the objects contents from.
);
//@}
};
/// Array of short integers.
#ifdef DOC_PLUS_PLUS
class PShortArray : public PBaseArray {
public:
/**@name Construction */
//@{
/**Construct a new dynamic array of shorts.
The array is initialised to all zeros.
*/
PShortArray(
PINDEX initialSize = 0 ///< Initial number of elements in the array.
);
/**Construct a new dynamic array of shorts.
*/
PShortArray(
short const * buffer, ///< Pointer to an array of shorts.
PINDEX length, ///< Number of elements pointed to by \p buffer.
PBoolean dynamic = true ///< Buffer is copied and dynamically allocated.
);
//@}
};
#else
PSCALAR_ARRAY(PShortArray, short);
#endif
/// Array of integers.
#ifdef DOC_PLUS_PLUS
class PIntArray : public PBaseArray {
public:
/**@name Construction */
//@{
/**Construct a new dynamic array of ints.
The array is initialised to all zeros.
*/
PIntArray(
PINDEX initialSize = 0 ///< Initial number of elements in the array.
);
/**Construct a new dynamic array of ints.
*/
PIntArray(
int const * buffer, ///< Pointer to an array of ints.
PINDEX length, ///< Number of elements pointed to by \p buffer.
PBoolean dynamic = true ///< Buffer is copied and dynamically allocated.
);
//@}
};
#else
PSCALAR_ARRAY(PIntArray, int);
#endif
/// Array of long integers.
#ifdef DOC_PLUS_PLUS
class PLongArray : public PBaseArray {
public:
/**@name Construction */
//@{
/**Construct a new dynamic array of longs.
The array is initialised to all zeros.
*/
PLongArray(
PINDEX initialSize = 0 ///< Initial number of elements in the array.
);
/**Construct a new dynamic array of longs.
*/
PLongArray(
long const * buffer, ///< Pointer to an array of longs.
PINDEX length, ///< Number of elements pointed to by \p buffer.
PBoolean dynamic = true ///< Buffer is copied and dynamically allocated.
);
//@}
};
#else
PSCALAR_ARRAY(PLongArray, long);
#endif
/// Array of unsigned characters.
#ifdef DOC_PLUS_PLUS
class PBYTEArray : public PBaseArray {
public:
/**@name Construction */
//@{
/**Construct a new dynamic array of unsigned chars.
The array is initialised to all zeros.
*/
PBYTEArray(
PINDEX initialSize = 0 ///< Initial number of elements in the array.
);
/**Construct a new dynamic array of unsigned chars.
*/
PBYTEArray(
BYTE const * buffer, ///< Pointer to an array of BYTEs.
PINDEX length, ///< Number of elements pointed to by \p buffer.
PBoolean dynamic = true ///< Buffer is copied and dynamically allocated.
);
//@}
};
#else
PDECLARE_BASEARRAY(PBYTEArray, BYTE);
#endif
public:
/**@name Overrides from class PObject */
//@{
/// Print the array
virtual void PrintOn(
ostream & strm ///< Stream to output to.
) const;
/// Read the array
virtual void ReadFrom(
istream &strm ///< Stream to read the objects contents from.
);
//@}
};
/// Array of unsigned short integers.
#ifdef DOC_PLUS_PLUS
class PWORDArray : public PBaseArray {
public:
/**@name Construction */
//@{
/**Construct a new dynamic array of unsigned shorts.
The array is initialised to all zeros.
*/
PWORDArray(
PINDEX initialSize = 0 ///< Initial number of elements in the array.
);
/**Construct a new dynamic array of unsigned shorts.
*/
PWORDArray(
WORD const * buffer, ///< Pointer to an array of WORDs.
PINDEX length, ///< Number of elements pointed to by \p buffer.
PBoolean dynamic = true ///< Buffer is copied and dynamically allocated.
);
//@}
};
#else
PSCALAR_ARRAY(PWORDArray, WORD);
#endif
/// Array of unsigned integers.
#ifdef DOC_PLUS_PLUS
class PUnsignedArray : public PBaseArray {
public:
/**@name Construction */
//@{
/**Construct a new dynamic array of unsigned ints.
The array is initialised to all zeros.
*/
PUnsignedArray(
PINDEX initialSize = 0 ///< Initial number of elements in the array.
);
/**Construct a new dynamic array of unsigned ints.
*/
PUnsignedArray(
unsigned const * buffer, ///< Pointer to an array of unsigned ints.
PINDEX length, ///< Number of elements pointed to by \p buffer.
PBoolean dynamic = true ///< Buffer is copied and dynamically allocated.
);
//@}
};
#else
PSCALAR_ARRAY(PUnsignedArray, unsigned);
#endif
/// Array of unsigned long integers.
#ifdef DOC_PLUS_PLUS
class PDWORDArray : public PBaseArray {
public:
/**@name Construction */
//@{
/**Construct a new dynamic array of unsigned longs.
The array is initialised to all zeros.
*/
PDWORDArray(
PINDEX initialSize = 0 ///< Initial number of elements in the array.
);
/**Construct a new dynamic array of DWORDs.
*/
PDWORDArray(
DWORD const * buffer, ///< Pointer to an array of DWORDs.
PINDEX length, ///< Number of elements pointed to by \p buffer.
PBoolean dynamic = true ///< Buffer is copied and dynamically allocated.
);
//@}
};
#else
PSCALAR_ARRAY(PDWORDArray, DWORD);
#endif
///////////////////////////////////////////////////////////////////////////////
// Linear array of objects
/** An array of objects.
This class is a collection of objects which are descendents of the
#PObject class. It is implemeted as a dynamic, linear array of
pointers to the objects.
The implementation of an array allows very fast random access to items in
the collection, but has severe penalties for inserting and deleting objects
as all other objects must be moved to accommodate the change.
An array of objects may have "gaps" in it. These are array entries that
contain NULL as the object pointer.
The PArrayObjects class would very rarely be descended from directly by
the user. The <code>PARRAY</code> macro would normally be used to create a class.
That will instantiate the template based on <code>PArray</code> or directly declare
and define the class (using inline functions) if templates are not being used.
The <code>PArray</code> class or <code>PARRAY</code> macro will define the
correctly typed operators for pointer access (operator const T *) and
subscript access (operator[]).
*/
class PArrayObjects : public PCollection
{
PCONTAINERINFO(PArrayObjects, PCollection);
public:
/**@name Construction */
//@{
/**Create a new array of objects. The array is initially set to the
specified size with each entry having NULL as is pointer value.
Note that by default, objects placed into the list will be deleted when
removed or when all references to the list are destroyed.
*/
PINLINE PArrayObjects(
PINDEX initialSize = 0 ///< Initial number of objects in the array.
);
//@}
/**@name Overrides from class PObject */
//@{
/**Get the relative rank of the two arrays. The following algorithm is
employed for the comparison:
\li <code>EqualTo</code> if the two array memory blocks are identical in
length and each objects values, not pointer, are
equal.
\li <code>LessThan</code> if the instances object value at an ordinal
position is less than the corresponding objects
value in the \p obj parameters array.
This is also returned if all objects are equal and
the instances array length is less than the
\p obj parameters array length.
\li <code>GreaterThan</code> if the instances object value at an ordinal
position is greater than the corresponding objects
value in the \p obj parameters array.
This is also returned if all objects are equal and
the instances array length is greater than the
\p obj parameters array length.
@return
Comparison of the two objects, <code>EqualTo</code> for same,
<code>LessThan</code> for \p obj logically less than the
object and <code>GreaterThan</code> for \p obj logically
greater than the object.
*/
virtual Comparison Compare(
const PObject & obj ///< Other <code>PAbstractArray</code> to compare against.
) const;
//@}
/**@name Overrides from class PContainer */
//@{
/// Get size of array
virtual PINDEX GetSize() const;
/**Set the size of the array in objects. A new array may be allocated to
accomodate the new number of objects. If the array increases in size
then the new object pointers are initialised to NULL. If the array is
made smaller then the data beyond the new size is lost.
@return
true if the memory for the array was allocated successfully.
*/
virtual PBoolean SetSize(
PINDEX newSize ///< New size of the array in objects.
);
//@}
/**@name Overrides from class PCollection */
//@{
/**Append a new object to the collection. This will increase the size of
the array by one and place the new object at that position.
@return
Index of the newly added object.
*/
virtual PINDEX Append(
PObject * obj ///< New object to place into the collection.
);
/**Insert a new object immediately before the specified object. If the
object to insert before is not in the collection then the equivalent of
the <code>Append()</code> function is performed.
All objects, including the \p before object are shifted up
one in the array.
Note that the object values are compared for the search of the
<code>before</code> parameter, not the pointers. So the objects in the
collection must correctly implement the PObject::Compare()
function.
@return
index of the newly inserted object.
*/
virtual PINDEX Insert(
const PObject & before, ///< Object value to insert before.
PObject * obj ///< New object to place into the collection.
);
/** Insert a new object at the specified ordinal index. If the index is
greater than the number of objects in the collection then the
equivalent of the <code>Append()</code> function is performed.
All objects, including the \p index position object are
shifted up one in the array.
@return
Index of the newly inserted object.
*/
virtual PINDEX InsertAt(
PINDEX index, ///< Index position in collection to place the object.
PObject * obj ///< New object to place into the collection.
);
/**Remove the object from the collection. If the <code>AllowDeleteObjects</code> option
is set then the object is also deleted.
All objects are shifted down to fill the vacated position.
@return
<code>true</code> if the object was in the collection.
*/
virtual PBoolean Remove(
const PObject * obj ///< Existing object to remove from the collection.
);
/**Remove the object at the specified ordinal index from the collection.
If the <code>AllowDeleteObjects</code> option is set then the object is also deleted.
All objects are shifted down to fill the vacated position.
Note if the \p index is beyond the size of the collection then the
function will assert.
@return
Pointer to the object being removed, or NULL if it was deleted.
*/
virtual PObject * RemoveAt(
PINDEX index ///< Index position in collection to place the object.
);
/**Set the object at the specified ordinal position to the new value. This
will overwrite the existing entry. If the <code>AllowDeleteObjects</code> option is
set then the old object is also deleted.
@return
<code>true</code> if the object was successfully added.
*/
virtual PBoolean SetAt(
PINDEX index, ///< Index position in collection to set.
PObject * val ///< New value to place into the collection.
);
/**Get the object at the specified ordinal position. If the index was
greater than the size of the collection then NULL is returned.
@return
Pointer to object at the specified index.
*/
virtual PObject * GetAt(
PINDEX index ///< Index position in the collection of the object.
) const;
/**Search the collection for the specific instance of the object. The
object pointers are compared, not the values. A simple linear search
from ordinal position zero is performed.
@return
Ordinal index position of the object, or <code>P_MAX_INDEX</code>.
*/
virtual PINDEX GetObjectsIndex(
const PObject * obj ///< Object to find.
) const;
/**Search the collection for the specified value of the object. The object
values are compared, not the pointers. So the objects in the
collection must correctly implement the PObject::Compare()
function. A simple linear search from ordinal position zero is
performed.
@return
Ordinal index position of the object, or <code>P_MAX_INDEX</code>.
*/
virtual PINDEX GetValuesIndex(
const PObject & obj // Object to find equal of.
) const;
/**Remove all of the elements in the collection. This operates by
continually calling <code>RemoveAt()</code> until there are no objects left.
The objects are removed from the last, at index
(GetSize()-1) toward the first at index zero.
*/
virtual void RemoveAll();
//@}
protected:
// The type below cannot be nested as DevStudio 2005 AUTOEXP.DAT doesn't like it
PBaseArray<PObject *> * theArray;
};
/**\class PArray
This template class maps the <code>PArrayObjects</code> to a specific object type.
The functions in this class primarily do all the appropriate casting of types.
Note that if templates are not used the <code>PARRAY</code> macro will
simulate the template instantiation.
*/
template <class T> class PArray : public PArrayObjects
{
PCLASSINFO(PArray, PArrayObjects);
public:
/**@name Construction */
//@{
/**Create a new array of objects. The array is initially set to the
specified size with each entry having NULL as is pointer value.
Note that by default, objects placed into the list will be deleted when
removed or when all references to the list are destroyed.
*/
PArray(
PINDEX initialSize = 0 ///< Initial number of objects in the array.
) : PArrayObjects(initialSize) { }
//@}
/**@name Overrides from class PObject */
//@{
/**Make a complete duplicate of the array. Note that all objects in the
array are also cloned, so this will make a complete copy of the array.
*/
virtual PObject * Clone() const
{ return PNEW PArray(0, this); }
//@}
/**@name New functions for class */
//@{
/**Retrieve a reference to the object in the array. If there was not an
object at that ordinal position or the index was beyond the size of the
array then the function asserts.
@return
Reference to the object at \p index position.
*/
T & operator[](
PINDEX index ///< Index position in the collection of the object.
) const {
PObject * obj = GetAt(index);
PAssert(obj != NULL, PInvalidArrayElement);
return (T &)*obj;
}
//@}
protected:
PArray(int dummy, const PArray * c) : PArrayObjects(dummy, c) { }
};
/**Declare an array to a specific type of object.
This macro is used to declare a descendent of <code>PArrayObjects</code> class,
customised for a particular object type \b T. This macro closes the
class declaration off so no additional members can be added.
If the compilation is using templates then this macro produces a typedef
of the <code>PArray</code> template class.
See the <code>PBaseArray</code> class and <code>PDECLARE_ARRAY</code> macro for more
information.
*/
#define PARRAY(cls, T) typedef PArray<T> cls
/**Begin declaration an array to a specific type of object.
This macro is used to declare a descendent of <code>PArrayObjects</code> class,
customised for a particular object type \b T.
If the compilation is using templates then this macro produces a descendent
of the <code>PArray</code> template class. If templates are not being used then
the macro defines a set of inline functions to do all casting of types. The
resultant classes have an identical set of functions in either case.
See the <code>PBaseArray</code> and <code>PAbstractArray</code> classes for more
information.
*/
#define PDECLARE_ARRAY(cls, T) \
PARRAY(cls##_PTemplate, T); \
PDECLARE_CLASS(cls, cls##_PTemplate) \
protected: \
inline cls(int dummy, const cls * c) \
: cls##_PTemplate(dummy, c) { } \
public: \
inline cls(PINDEX initialSize = 0) \
: cls##_PTemplate(initialSize) { } \
virtual PObject * Clone() const \
{ return PNEW cls(0, this); } \
/**This class represents a dynamic bit array.
*/
class PBitArray : public PBYTEArray
{
PCLASSINFO(PBitArray, PBYTEArray);
public:
/**@name Construction */
//@{
/**Construct a new dynamic array of bits.
*/
PBitArray(
PINDEX initialSize = 0 ///< Initial number of bits in the array.
);
/**Construct a new dynamic array of elements of the specified type.
*/
PBitArray(
const void * buffer, ///< Pointer to an array of the elements of type \b T.
PINDEX length, ///< Number of bits (not bytes!) pointed to by \p buffer.
PBoolean dynamic = true ///< Buffer is copied and dynamically allocated.
);
//@}
/**@name Overrides from class PObject */
//@{
/**Clone the object.
*/
virtual PObject * Clone() const;
//@}
/**@name Overrides from class <code>PContainer</code> */
//@{
/**Get the current size of the container.
This represents the number of things the container contains. For some
types of containers this will always return 1.
@return Number of objects in container.
*/
virtual PINDEX GetSize() const;
/**Set the size of the array in bits. A new array may be allocated to
accomodate the new number of bits. If the array increases in size
then the new bytes are initialised to zero. If the array is made smaller
then the data beyond the new size is lost.
@return
true if the memory for the array was allocated successfully.
*/
virtual PBoolean SetSize(
PINDEX newSize ///< New size of the array in bits, not bytes.
);
/**Set the specific bit in the array. The array will automatically
expand, if necessary, to fit the new element in.
@return
true if new memory for the array was successfully allocated.
*/
PBoolean SetAt(
PINDEX index, ///< Position in the array to set the new value.
PBoolean val ///< Value to set in the array.
);
/**Get a bit from the array. If \p index is beyond the end
of the allocated array then <code>false</code> is returned.
@return
Value at the array position.
*/
PBoolean GetAt(
PINDEX index ///< Position on the array to get value from.
) const;
/**Attach a pointer to a static block to the bit array type. The pointer
is used directly and will not be copied to a dynamically allocated
buffer. If the <code>SetSize()</code> function is used to change the size of the
buffer, the object will be converted to a dynamic form with the
contents of the static buffer copied to the allocated buffer.
Any dynamically allocated buffer will be freed.
*/
void Attach(
const void * buffer, ///< Pointer to an array of elements.
PINDEX bufferSize ///< Number of bits (not bytes!) pointed to by buffer.
);
/**Get a pointer to the internal array and assure that it is of at least
the specified size. This is useful when the array contents are being
set by some external or system function eg file read.
It is unsafe to assume that the pointer is valid for very long after
return from this function. The array may be resized or otherwise
changed and the pointer returned invalidated. It should be used for
simple calls to atomic functions, or very careful examination of the
program logic must be performed.
@return
Pointer to the array memory.
*/
BYTE * GetPointer(
PINDEX minSize = 0 ///< Minimum size in bits (not bytes!) for returned buffer pointer.
);
//@}
/**@name New functions for class */
//@{
/**Get a value from the array. If the <code>index</code> is beyond the end
of the allocated array then a zero value is returned.
This is functionally identical to the <code>PContainer::GetAt()</code>
function.
@return
Value at the array position.
*/
PBoolean operator[](
PINDEX index ///< Position on the array to get value from.
) const { return GetAt(index); }
/**Set a bit to the array.
This is functionally identical to the PContainer::SetAt(index, true)
function.
*/
PBitArray & operator+=(
PINDEX index ///< Position on the array to get value from.
) { SetAt(index, true); return *this; }
/**Set a bit to the array.
This is functionally identical to the PContainer::SetAt(index, true)
function.
*/
PBitArray & operator-=(
PINDEX index ///< Position on the array to get value from.
) { SetAt(index, false); return *this; }
/**Concatenate one array to the end of this array.
This function will allocate a new array large enough for the existing
contents and the contents of the parameter. The paramters contents is then
copied to the end of the existing array.
Note this does nothing and returns false if the target array is not
dynamically allocated.
@return
<code>true</code> if the memory allocation succeeded.
*/
PBoolean Concatenate(
const PBitArray & array ///< Other array to concatenate
);
//@}
};
#endif // PTLIB_ARRAY_H
// End Of File ///////////////////////////////////////////////////////////////
|