This file is indexed.

/usr/include/pynac/clifford.h is in libpynac-dev 0.3.2+dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
/** @file clifford.h
 *
 *  Interface to GiNaC's clifford algebra (Dirac gamma) objects. */

/*
 *  GiNaC Copyright (C) 1999-2008 Johannes Gutenberg University Mainz, Germany
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 */

#ifndef __GINAC_CLIFFORD_H__
#define __GINAC_CLIFFORD_H__

#include "symbol.h"
#include "indexed.h"
#include "tensor.h"
#include "idx.h"

#include <set>

namespace GiNaC {


/** This class holds an object representing an element of the Clifford
 *  algebra (the Dirac gamma matrices). These objects only carry Lorentz
 *  indices. Spinor indices are hidden. A representation label (an unsigned
 *  8-bit integer) is used to distinguish elements from different Clifford
 *  algebras (objects with different labels commutate). */
class clifford : public indexed
{
	GINAC_DECLARE_REGISTERED_CLASS(clifford, indexed)
public:
	static const tinfo_static_t return_type_tinfo_static[256];

	// other constructors
public:
	clifford(const ex & b, unsigned char rl = 0);
	clifford(const ex & b, const ex & mu,  const ex & metr, unsigned char rl = 0, int comm_sign = -1);

	// internal constructors
	clifford(unsigned char rl, const ex & metr, int comm_sign, const exvector & v, bool discardable = false);
	clifford(unsigned char rl, const ex & metr, int comm_sign, std::auto_ptr<exvector> vp);

	// functions overriding virtual functions from base classes
public:
	unsigned precedence() const { return 65; }
protected:
	ex eval_ncmul(const exvector & v) const;
	bool match_same_type(const basic & other) const;
	ex thiscontainer(const exvector & v) const;
	ex thiscontainer(std::auto_ptr<exvector> vp) const;
	unsigned return_type() const { return return_types::noncommutative; }
	tinfo_t return_type_tinfo() const { return clifford::return_type_tinfo_static+representation_label; }

	// non-virtual functions in this class
public:
	unsigned char get_representation_label() const { return representation_label; }
	ex get_metric() const { return metric; }
	virtual ex get_metric(const ex & i, const ex & j, bool symmetrised = false) const;
	bool same_metric(const ex & other) const;
	int get_commutator_sign() const { return commutator_sign; } //**< See the member variable commutator_sign */

	inline size_t nops() const {return inherited::nops() + 1; }
	ex op(size_t i) const;
	ex & let_op(size_t i);
	ex subs(const exmap & m, unsigned options = 0) const;

protected:
	void do_print_dflt(const print_dflt & c, unsigned level) const;
	void do_print_latex(const print_latex & c, unsigned level) const;

	// member variables
protected:
	unsigned char representation_label; /**< Representation label to distinguish independent spin lines */
	ex metric; /**< Metric of the space, all constructors make it an indexed object */
	int commutator_sign; /**< It is the sign in the definition e~i e~j +/- e~j e~i = B(i, j) + B(j, i)*/
};

/** This class represents the Clifford algebra unity element. */
class diracone : public tensor
{
	GINAC_DECLARE_REGISTERED_CLASS(diracone, tensor)

	// non-virtual functions in this class
protected:
	void do_print(const print_context & c, unsigned level) const;
	void do_print_latex(const print_latex & c, unsigned level) const;
};


/** This class represents the Clifford algebra generators (units). */
class cliffordunit : public tensor
{
	GINAC_DECLARE_REGISTERED_CLASS(cliffordunit, tensor)

	// other constructors
protected:
	cliffordunit(tinfo_t ti) : inherited(ti) {}
                                                                                                    
	// functions overriding virtual functions from base classes
public:
	bool contract_with(exvector::iterator self, exvector::iterator other, exvector & v) const;

	// non-virtual functions in this class
protected:
	void do_print(const print_context & c, unsigned level) const;
	void do_print_latex(const print_latex & c, unsigned level) const;
};


/** This class represents the Dirac gamma Lorentz vector. */
class diracgamma : public cliffordunit
{
	GINAC_DECLARE_REGISTERED_CLASS(diracgamma, cliffordunit)

	// functions overriding virtual functions from base classes
public:
	bool contract_with(exvector::iterator self, exvector::iterator other, exvector & v) const;

	// non-virtual functions in this class
protected:
	void do_print(const print_context & c, unsigned level) const;
	void do_print_latex(const print_latex & c, unsigned level) const;
};


/** This class represents the Dirac gamma5 object which anticommutates with
 *  all other gammas. */
class diracgamma5 : public tensor
{
	GINAC_DECLARE_REGISTERED_CLASS(diracgamma5, tensor)

	// functions overriding virtual functions from base classes
	ex conjugate() const;

	// non-virtual functions in this class
protected:
	void do_print(const print_context & c, unsigned level) const;
	void do_print_latex(const print_latex & c, unsigned level) const;
};


/** This class represents the Dirac gammaL object which behaves like
 *  1/2 (1-gamma5). */
class diracgammaL : public tensor
{
	GINAC_DECLARE_REGISTERED_CLASS(diracgammaL, tensor)

	// functions overriding virtual functions from base classes
	ex conjugate() const;

	// non-virtual functions in this class
protected:
	void do_print(const print_context & c, unsigned level) const;
	void do_print_latex(const print_latex & c, unsigned level) const;
};


/** This class represents the Dirac gammaL object which behaves like
 *  1/2 (1+gamma5). */
class diracgammaR : public tensor
{
	GINAC_DECLARE_REGISTERED_CLASS(diracgammaR, tensor)

	// functions overriding virtual functions from base classes
	ex conjugate() const;

	// non-virtual functions in this class
protected:
	void do_print(const print_context & c, unsigned level) const;
	void do_print_latex(const print_latex & c, unsigned level) const;
};


// global functions

/** Check whether a given tinfo key (as returned by return_type_tinfo()
  * is that of a clifford object (with an arbitrary representation label).
  *
  * @param ti tinfo key */
bool is_clifford_tinfo(tinfo_t ti);

/** Create a Clifford unity object.
 *
 *  @param rl Representation label
 *  @return newly constructed object */
ex dirac_ONE(unsigned char rl = 0);

/** Create a Clifford unit object.
 *
 *  @param mu Index (must be of class varidx or a derived class)
 *  @param metr Metric (should be indexed, tensmetric or a derived class, or a matrix)
 *  @param rl Representation label
 *  @return newly constructed Clifford unit object */
ex clifford_unit(const ex & mu, const ex & metr, unsigned char rl = 0);

/** Create a Dirac gamma object.
 *
 *  @param mu Index (must be of class varidx or a derived class)
 *  @param rl Representation label
 *  @return newly constructed gamma object */
ex dirac_gamma(const ex & mu, unsigned char rl = 0);

/** Create a Dirac gamma5 object.
 *
 *  @param rl Representation label
 *  @return newly constructed object */
ex dirac_gamma5(unsigned char rl = 0);

/** Create a Dirac gammaL object.
 *
 *  @param rl Representation label
 *  @return newly constructed object */
ex dirac_gammaL(unsigned char rl = 0);

/** Create a Dirac gammaR object.
 *
 *  @param rl Representation label
 *  @return newly constructed object */
ex dirac_gammaR(unsigned char rl = 0);

/** Create a term of the form e_mu * gamma~mu with a unique index mu.
 *
 *  @param e Original expression
 *  @param dim Dimension of index
 *  @param rl Representation label */
ex dirac_slash(const ex & e, const ex & dim, unsigned char rl = 0);

/** Calculate dirac traces over the specified set of representation labels.
 *  The computed trace is a linear functional that is equal to the usual
 *  trace only in D = 4 dimensions. In particular, the functional is not
 *  always cyclic in D != 4 dimensions when gamma5 is involved.
 *
 *  @param e Expression to take the trace of
 *  @param rls Set of representation labels
 *  @param trONE Expression to be returned as the trace of the unit matrix */
ex dirac_trace(const ex & e, const std::set<unsigned char> & rls, const ex & trONE = 4);

/** Calculate dirac traces over the specified list of representation labels.
 *  The computed trace is a linear functional that is equal to the usual
 *  trace only in D = 4 dimensions. In particular, the functional is not
 *  always cyclic in D != 4 dimensions when gamma5 is involved.
 *
 *  @param e Expression to take the trace of
 *  @param rll List of representation labels
 *  @param trONE Expression to be returned as the trace of the unit matrix */
ex dirac_trace(const ex & e, const lst & rll, const ex & trONE = 4);

/** Calculate the trace of an expression containing gamma objects with
 *  a specified representation label. The computed trace is a linear
 *  functional that is equal to the usual trace only in D = 4 dimensions.
 *  In particular, the functional is not always cyclic in D != 4 dimensions
 *  when gamma5 is involved.
 *
 *  @param e Expression to take the trace of
 *  @param rl Representation label
 *  @param trONE Expression to be returned as the trace of the unit matrix */
ex dirac_trace(const ex & e, unsigned char rl = 0, const ex & trONE = 4);

/** Bring all products of clifford objects in an expression into a canonical
 *  order. This is not necessarily the most simple form but it will allow
 *  to check two expressions for equality. */
ex canonicalize_clifford(const ex & e);

/** Automorphism of the Clifford algebra, simply changes signs of all
 *  clifford units. */
ex clifford_prime(const ex & e);

/** Main anti-automorphism of the Clifford algebra: makes reversion
 *  and changes signs of all clifford units. */
inline ex clifford_bar(const ex & e) { return clifford_prime(e.conjugate()); }

/** Reversion of the Clifford algebra, coincides with the conjugate(). */
inline ex clifford_star(const ex & e) { return e.conjugate(); }

/** Replaces dirac_ONE's (with a representation_label no less than rl) in e with 1.
 *  For the default value rl = 0 remove all of them. Aborts if e contains any 
 *  clifford_unit with representation_label to be removed.
 *
 *  @param e Expression to be processed
 *  @param rl Value of representation label 
 *  @param options Defines some internal use */
ex remove_dirac_ONE(const ex & e, unsigned char rl = 0, unsigned options = 0);

/** Returns the maximal representation label of a clifford object 
 *  if e contains at least one, otherwise returns -1 
 *
 *  @param e Expression to be processed
 *  @ignore_ONE defines if clifford_ONE should be ignored in the search*/
int clifford_max_label(const ex & e, bool ignore_ONE = false);

/** Calculation of the norm in the Clifford algebra. */
ex clifford_norm(const ex & e);

/** Calculation of the inverse in the Clifford algebra. */
ex clifford_inverse(const ex & e);

/** List or vector conversion into the Clifford vector.
 *
 *  @param v List or vector of coordinates
 *  @param mu Index (must be of class varidx or a derived class)
 *  @param metr Metric (should be indexed, tensmetric or a derived class, or a matrix)
 *  @param rl Representation label
 *  @param e Clifford unit object
 *  @return Clifford vector with given components */
ex lst_to_clifford(const ex & v, const ex & mu,  const ex & metr, unsigned char rl = 0);
ex lst_to_clifford(const ex & v, const ex & e);

/** An inverse function to lst_to_clifford(). For given Clifford vector extracts
 *  its components with respect to given Clifford unit. Obtained components may 
 *  contain Clifford units with a different metric. Extraction is based on 
 *  the algebraic formula (e * c.i + c.i * e)/ pow(e.i, 2) for non-degenerate cases
 *  (i.e. neither pow(e.i, 2) = 0).
 *  
 *  @param e Clifford expression to be decomposed into components
 *  @param c Clifford unit defining the metric for splitting (should have numeric dimension of indices)
 *  @param algebraic Use algebraic or symbolic algorithm for extractions 
 *  @return List of components of a Clifford vector*/
lst clifford_to_lst(const ex & e, const ex & c, bool algebraic=true);

/** Calculations of Moebius transformations (conformal map) defined by a 2x2 Clifford matrix
 *  (a b\\c d) in linear spaces with arbitrary signature. The expression is 
 *  (a * x + b)/(c * x + d), where x is a vector build from list v with metric G.
 *  (see Jan Cnops. An introduction to {D}irac operators on manifolds, v.24 of
 *  Progress in Mathematical Physics. Birkhauser Boston Inc., Boston, MA, 2002.)
 * 
 *  @param a (1,1) entry of the defining matrix
 *  @param b (1,2) entry of the defining matrix
 *  @param c (2,1) entry of the defining matrix
 *  @param d (2,2) entry of the defining matrix
 *  @param v Vector to be transformed
 *  @param G Metric of the surrounding space, may be a Clifford unit then the next parameter is ignored
 *  @param rl Representation label 
 *  @return List of components of the transformed vector*/
ex clifford_moebius_map(const ex & a, const ex & b, const ex & c, const ex & d, const ex & v, const ex & G, unsigned char rl = 0);

/** The second form of Moebius transformations defined by a 2x2 Clifford matrix M
 *  This function takes the transformation matrix M as a single entity.
 * 
 *  @param M the defining matrix
 *  @param v Vector to be transformed
 *  @param G Metric of the surrounding space, may be a Clifford unit then the next parameter is ignored
 *  @param rl Representation label 
 *  @return List of components of the transformed vector*/
ex clifford_moebius_map(const ex & M, const ex & v, const ex & G, unsigned char rl = 0);

} // namespace GiNaC

#endif // ndef __GINAC_CLIFFORD_H__