This file is indexed.

/usr/include/ql/pricingengines/mcsimulation.hpp is in libquantlib0-dev 1.4-2+b1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2003 Ferdinando Ametrano
 Copyright (C) 2000, 2001, 2002, 2003 RiskMap srl
 Copyright (C) 2007 StatPro Italia srl

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

/*! \file mcsimulation.hpp
    \brief framework for Monte Carlo engines
*/

#ifndef quantlib_montecarlo_engine_hpp
#define quantlib_montecarlo_engine_hpp

#include <ql/grid.hpp>
#include <ql/methods/montecarlo/montecarlomodel.hpp>

namespace QuantLib {

    //! base class for Monte Carlo engines
    /*! Eventually this class might offer greeks methods.  Deriving a
        class from McSimulation gives an easy way to write a Monte
        Carlo engine.

        See McVanillaEngine as an example.
    */

    template <template <class> class MC, class RNG, class S = Statistics>
    class McSimulation {
      public:
        typedef typename MonteCarloModel<MC,RNG,S>::path_generator_type
            path_generator_type;
        typedef typename MonteCarloModel<MC,RNG,S>::path_pricer_type
            path_pricer_type;
        typedef typename MonteCarloModel<MC,RNG,S>::stats_type
            stats_type;
        typedef typename MonteCarloModel<MC,RNG,S>::result_type result_type;

        virtual ~McSimulation() {}
        //! add samples until the required absolute tolerance is reached
        result_type value(Real tolerance,
                          Size maxSamples = QL_MAX_INTEGER,
                          Size minSamples = 1023) const;
        //! simulate a fixed number of samples
        result_type valueWithSamples(Size samples) const;
        //! error estimated using the samples simulated so far
        result_type errorEstimate() const;
        //! access to the sample accumulator for richer statistics
        const stats_type& sampleAccumulator(void) const;
        //! basic calculate method provided to inherited pricing engines
        void calculate(Real requiredTolerance,
                       Size requiredSamples,
                       Size maxSamples) const;
      protected:
        McSimulation(bool antitheticVariate,
                     bool controlVariate)
        : antitheticVariate_(antitheticVariate),
          controlVariate_(controlVariate) {}
        virtual boost::shared_ptr<path_pricer_type> pathPricer() const = 0;
        virtual boost::shared_ptr<path_generator_type> pathGenerator()
                                                                   const = 0;
        virtual TimeGrid timeGrid() const = 0;
        virtual boost::shared_ptr<path_pricer_type> controlPathPricer() const {
            return boost::shared_ptr<path_pricer_type>();
        }
        virtual boost::shared_ptr<path_generator_type> 
        controlPathGenerator() const {
            return boost::shared_ptr<path_generator_type>();
        }
        virtual boost::shared_ptr<PricingEngine> controlPricingEngine() const {
            return boost::shared_ptr<PricingEngine>();
        }
        virtual result_type controlVariateValue() const {
            return Null<result_type>();
        }
        template <class Sequence>
        static Real maxError(const Sequence& sequence) {
            return *std::max_element(sequence.begin(), sequence.end());
        }
        static Real maxError(Real error) {
            return error;
        }
        
        mutable boost::shared_ptr<MonteCarloModel<MC,RNG,S> > mcModel_;
        bool antitheticVariate_, controlVariate_;
    };


    // inline definitions
    template <template <class> class MC, class RNG, class S>
    inline typename McSimulation<MC,RNG,S>::result_type
        McSimulation<MC,RNG,S>::value(Real tolerance,
                                              Size maxSamples,
                                              Size minSamples) const {
        Size sampleNumber =
            mcModel_->sampleAccumulator().samples();
        if (sampleNumber<minSamples) {
            mcModel_->addSamples(minSamples-sampleNumber);
            sampleNumber = mcModel_->sampleAccumulator().samples();
        }

        Size nextBatch;
        Real order;
        result_type error(mcModel_->sampleAccumulator().errorEstimate());
        while (maxError(error) > tolerance) {
            QL_REQUIRE(sampleNumber<maxSamples,
                       "max number of samples (" << maxSamples
                       << ") reached, while error (" << error
                       << ") is still above tolerance (" << tolerance << ")");

            // conservative estimate of how many samples are needed
            order = maxError(error*error)/tolerance/tolerance;
            nextBatch =
                Size(std::max<Real>(static_cast<Real>(sampleNumber)*order*0.8-static_cast<Real>(sampleNumber),
                                    static_cast<Real>(minSamples)));

            // do not exceed maxSamples
            nextBatch = std::min(nextBatch, maxSamples-sampleNumber);
            sampleNumber += nextBatch;
            mcModel_->addSamples(nextBatch);
            error = result_type(mcModel_->sampleAccumulator().errorEstimate());
        }

        return result_type(mcModel_->sampleAccumulator().mean());
    }


    template <template <class> class MC, class RNG, class S>
    inline typename McSimulation<MC,RNG,S>::result_type
        McSimulation<MC,RNG,S>::valueWithSamples(Size samples) const {

        Size sampleNumber = mcModel_->sampleAccumulator().samples();

        QL_REQUIRE(samples>=sampleNumber,
                   "number of already simulated samples (" << sampleNumber
                   << ") greater than requested samples (" << samples << ")");

        mcModel_->addSamples(samples-sampleNumber);

        return result_type(mcModel_->sampleAccumulator().mean());
    }


    template <template <class> class MC, class RNG, class S>
    inline void McSimulation<MC,RNG,S>::calculate(Real requiredTolerance,
                                                  Size requiredSamples,
                                                  Size maxSamples) const {

        QL_REQUIRE(requiredTolerance != Null<Real>() ||
                   requiredSamples != Null<Size>(),
                   "neither tolerance nor number of samples set");

        //! Initialize the one-factor Monte Carlo
        if (this->controlVariate_) {

            result_type controlVariateValue = this->controlVariateValue();
            QL_REQUIRE(controlVariateValue != Null<result_type>(),
                       "engine does not provide "
                       "control-variation price");

            boost::shared_ptr<path_pricer_type> controlPP =
                this->controlPathPricer();
            QL_REQUIRE(controlPP,
                       "engine does not provide "
                       "control-variation path pricer");

            boost::shared_ptr<path_generator_type> controlPG = 
                this->controlPathGenerator();

            this->mcModel_ =
                boost::shared_ptr<MonteCarloModel<MC,RNG,S> >(
                    new MonteCarloModel<MC,RNG,S>(
                           pathGenerator(), this->pathPricer(), stats_type(),
                           this->antitheticVariate_, controlPP,
                           controlVariateValue, controlPG));
        } else {
            this->mcModel_ =
                boost::shared_ptr<MonteCarloModel<MC,RNG,S> >(
                    new MonteCarloModel<MC,RNG,S>(
                           pathGenerator(), this->pathPricer(), S(),
                           this->antitheticVariate_));
        }

        if (requiredTolerance != Null<Real>()) {
            if (maxSamples != Null<Size>())
                this->value(requiredTolerance, maxSamples);
            else
                this->value(requiredTolerance);
        } else {
            this->valueWithSamples(requiredSamples);
        }

    }

    template <template <class> class MC, class RNG, class S>
    inline typename McSimulation<MC,RNG,S>::result_type
        McSimulation<MC,RNG,S>::errorEstimate() const {
        return mcModel_->sampleAccumulator().errorEstimate();
    }

    template <template <class> class MC, class RNG, class S>
    inline const typename McSimulation<MC,RNG,S>::stats_type&
    McSimulation<MC,RNG,S>::sampleAccumulator() const {
        return mcModel_->sampleAccumulator();
    }

}


#endif