This file is indexed.

/usr/include/ql/termstructures/iterativebootstrap.hpp is in libquantlib0-dev 1.4-2+b1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2008, 2011 Ferdinando Ametrano
 Copyright (C) 2007 Chris Kenyon
 Copyright (C) 2007 StatPro Italia srl

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

/*! \file iterativebootstrap.hpp
    \brief universal piecewise-term-structure boostrapper.
*/

#ifndef quantlib_iterative_bootstrap_hpp
#define quantlib_iterative_bootstrap_hpp

#include <ql/termstructures/bootstraphelper.hpp>
#include <ql/termstructures/bootstraperror.hpp>
#include <ql/math/interpolations/linearinterpolation.hpp>
#include <ql/math/solvers1d/finitedifferencenewtonsafe.hpp>
#include <ql/math/solvers1d/brent.hpp>
#include <ql/utilities/dataformatters.hpp>

namespace QuantLib {

    //! Universal piecewise-term-structure boostrapper.
    template <class Curve>
    class IterativeBootstrap {
        typedef typename Curve::traits_type Traits;
        typedef typename Curve::interpolator_type Interpolator;
      public:
        IterativeBootstrap();
        void setup(Curve* ts);
        void calculate() const;
      private:
        void initialize() const;
        Curve* ts_;
        Size n_;
        Brent firstSolver_;
        FiniteDifferenceNewtonSafe solver_;
        mutable bool initialized_, validCurve_;
        mutable Size firstAliveHelper_, alive_;
        mutable std::vector<Real> previousData_;
        mutable std::vector<boost::shared_ptr<BootstrapError<Curve> > > errors_;
    };


    // template definitions

    template <class Curve>
    IterativeBootstrap<Curve>::IterativeBootstrap()
        : ts_(0), initialized_(false), validCurve_(false) {}

    template <class Curve>
    void IterativeBootstrap<Curve>::setup(Curve* ts) {

        ts_ = ts;
        n_ = ts_->instruments_.size();
        QL_REQUIRE(n_ > 0, "no bootstrap helpers given")
        for (Size j=0; j<n_; ++j)
            ts_->registerWith(ts_->instruments_[j]);

        // do not initialize yet: instruments could be invalid here
        // but valid later when bootstrapping is actually required
    }

    template <class Curve>
    void IterativeBootstrap<Curve>::initialize() const {
        // ensure helpers are sorted
        std::sort(ts_->instruments_.begin(), ts_->instruments_.end(),
                  detail::BootstrapHelperSorter());

        // skip expired helpers
        Date firstDate = Traits::initialDate(ts_);
        QL_REQUIRE(ts_->instruments_[n_-1]->latestDate()>firstDate,
                   "all instruments expired");
        firstAliveHelper_ = 0;
        while (ts_->instruments_[firstAliveHelper_]->latestDate() <= firstDate)
            ++firstAliveHelper_;
        alive_ = n_-firstAliveHelper_;
        QL_REQUIRE(alive_>=Interpolator::requiredPoints-1,
                   "not enough alive instruments: " << alive_ <<
                   " provided, " << Interpolator::requiredPoints-1 <<
                   " required");

        // calculate dates and times, create errors_
        std::vector<Date>& dates = ts_->dates_;
        std::vector<Time>& times = ts_->times_;
        dates.resize(alive_+1);
        times.resize(alive_+1);
        errors_.resize(alive_+1);
        dates[0] = firstDate;
        times[0] = ts_->timeFromReference(dates[0]);
        // pillar counter: i
        // helper counter: j
        for (Size i=1, j=firstAliveHelper_; j<n_; ++i, ++j) {
            const boost::shared_ptr<typename Traits::helper>& helper =
                                                        ts_->instruments_[j];
            dates[i] = helper->latestDate();
            times[i] = ts_->timeFromReference(dates[i]);
            // check for duplicated maturity
            QL_REQUIRE(dates[i-1]!=dates[i],
                       "more than one instrument with maturity " << dates[i]);
            errors_[i] = boost::shared_ptr<BootstrapError<Curve> >(new
                BootstrapError<Curve>(ts_, helper, i));
        }

        // set initial guess only if the current curve cannot be used as guess
        if (!validCurve_ || ts_->data_.size()!=alive_+1) {
            // ts_->data_[0] is the only relevant item,
            // but reasonable numbers might be needed for the whole data vector
            // because, e.g., of interpolation's early checks
            ts_->data_ = std::vector<Real>(alive_+1, Traits::initialValue(ts_));
            previousData_.resize(alive_+1);
        }
        initialized_ = true;
    }

    template <class Curve>
    void IterativeBootstrap<Curve>::calculate() const {

        // we might have to call initialize even if the curve is initialized
        // and not moving, just because helpers might be date relative and change
        // with evaluation date change.
        // anyway it makes little sense to use date relative helpers with a
        // non-moving curve if the evaluation date changes
        if (!initialized_ || ts_->moving_)
            initialize();

        // setup helpers
        for (Size j=firstAliveHelper_; j<n_; ++j) {
            const boost::shared_ptr<typename Traits::helper>& helper =
                                                        ts_->instruments_[j];
            // check for valid quote
            QL_REQUIRE(helper->quote()->isValid(),
                       io::ordinal(j+1) << " instrument (maturity: " <<
                       helper->latestDate() << ") has an invalid quote");
            // don't try this at home!
            // This call creates helpers, and removes "const".
            // There is a significant interaction with observability.
            helper->setTermStructure(const_cast<Curve*>(ts_));
        }

        const std::vector<Time>& times = ts_->times_;
        const std::vector<Real>& data = ts_->data_;
        Real accuracy = ts_->accuracy_;

        Size maxIterations = Traits::maxIterations()-1;

        for (Size iteration=0; ; ++iteration) {
            previousData_ = ts_->data_;

            for (Size i=1; i<=alive_; ++i) { // pillar loop

                bool validData = validCurve_ || iteration>0;

                // bracket root and calculate guess
                Real min = Traits::minValueAfter(i, ts_, validData,
                                                            firstAliveHelper_);
                Real max = Traits::maxValueAfter(i, ts_, validData,
                                                            firstAliveHelper_);
                Real guess = Traits::guess(i, ts_, validData,
                                                            firstAliveHelper_);
                // adjust guess if needed
                if (guess>=max)
                    guess = max - (max-min)/5.0;
                else if (guess<=min)
                    guess = min + (max-min)/5.0;

                // extend interpolation if needed
                if (!validData) {
                    try { // extend interpolation a point at a time
                          // including the pillar to be boostrapped
                        ts_->interpolation_ = ts_->interpolator_.interpolate(
                            times.begin(), times.begin()+i+1, data.begin());
                    } catch (...) {
                        if (!Interpolator::global)
                            throw; // no chance to fix it in a later iteration

                        // otherwise use Linear while the target
                        // interpolation is not usable yet
                        ts_->interpolation_ = Linear().interpolate(
                            times.begin(), times.begin()+i+1, data.begin());
                    }
                    ts_->interpolation_.update();
                }

                try {
                    if (validData)
                        solver_.solve(*errors_[i], accuracy, guess, min, max);
                    else
                        firstSolver_.solve(*errors_[i], accuracy,guess,min,max);
                } catch (std::exception &e) {
                    validCurve_ = false;
                    QL_FAIL(io::ordinal(iteration+1) << " iteration: failed "
                            "at " << io::ordinal(i) << " alive instrument, "
                            "maturity " << errors_[i]->helper()->latestDate()<<
                            ", reference date " << ts_->dates_[0] <<
                            ": " << e.what());
                }
            }

            if (!Interpolator::global)
                break;     // no need for convergence loop
            else if (iteration==0)
                continue; // at least one more iteration to convergence check

            // exit condition
            Real change = std::fabs(data[1]-previousData_[1]);
            for (Size i=2; i<=alive_; ++i)
                change = std::max(change, std::fabs(data[i]-previousData_[i]));
            if (change<=accuracy)  // convergence reached
                break;

            QL_REQUIRE(iteration<maxIterations,
                       "convergence not reached after " << iteration <<
                       " iterations; last improvement " << change <<
                       ", required accuracy " << accuracy);
        }
        validCurve_ = true;
    }

}

#endif