/usr/include/rheolef/gauss_jacobi.icc is in librheolef-dev 6.5-1+b1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 | /// This file is part of Rheolef.
///
/// Copyright (C) 2000-2009 Pierre Saramito
///
/// Rheolef is free software; you can redistribute it and/or modify
/// it under the terms of the GNU General Public License as published by
/// the Free Software Foundation; either version 2 of the License, or
/// (at your option) any later version.
///
/// Rheolef is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with Rheolef; if not, write to the Free Software
/// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
/// lexer for qmg mesh files
/// =========================================================================
#include "rheolef/gamma.h"
#include "rheolef/jacobi.h"
#include "rheolef/jacobi_roots.h"
#include <iterator>
template <class Size, class OutputIterator1, class OutputIterator2>
void
gauss_jacobi (Size R,
typename std::iterator_traits<OutputIterator1>::value_type alpha,
typename std::iterator_traits<OutputIterator1>::value_type beta,
OutputIterator1 zeta, OutputIterator2 omega)
{
typedef typename std::iterator_traits<OutputIterator1>::value_type T;
T num = pow(T(2), alpha+beta+3)/sqr(alpha+beta+T(R)+1);
if (alpha == T(int(alpha)) && beta == T(int(beta)))
for (Size k = 1; k <= size_t(int(beta)); k++)
num *= (T(R)+T(k))/(alpha+T(R)+T(k));
else
num *= (my_gamma(alpha+T(R)+1)/my_gamma(alpha+beta+T(R)+1))
*(my_gamma(beta+T(R)+1)/my_gamma(T(R)+1));
jacobi_roots (R, alpha, beta, zeta);
jacobi<T> P (R-1, alpha+1, beta+1);
for (Size r = 0; r < R; r++)
omega[r] = num/((1-sqr(zeta[r]))*sqr(P(zeta[r])));
}
|