/usr/include/rheolef/integrate.h is in librheolef-dev 6.5-1+b1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 | #ifndef _RHEO_INTEGRATE_H
#define _RHEO_INTEGRATE_H
///
/// This file is part of Rheolef.
///
/// Copyright (C) 2000-2009 Pierre Saramito <Pierre.Saramito@imag.fr>
///
/// Rheolef is free software; you can redistribute it and/or modify
/// it under the terms of the GNU General Public License as published by
/// the Free Software Foundation; either version 2 of the License, or
/// (at your option) any later version.
///
/// Rheolef is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with Rheolef; if not, write to the Free Software
/// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
///
/// =========================================================================
#include "rheolef/test.h"
#include "rheolef/field_vf_expr.h"
#include "rheolef/form_vf_expr.h"
#include "rheolef/form_option_type.h"
#include "rheolef/integrate_numeric.icc"
#include "rheolef/riesz.h" // for details::f_constant
namespace rheolef {
/*Class:integrate
NAME: @code{integrate} - integrate a function or an expression
@findex integrate
DESCRIPTION:
Integrate an expression over a domain by using a quadrature formulae.
There are three main usages of the integrate function, depending upon the
type of the expression.
(i) When the expression is a numerical one, it leads to a numerical value.
(ii) When the expression involves a symbolic test-function @pxref{test class},
the result is a linear form, represented by the @code{field} class.
(iii) When the expression involves both symbolic trial- and test-functions @pxref{test class},
the result is a bilinear form, represented by the @code{field} class.
SYNOPSYS:
@example
template <class T, class M, class Expr>
T integrate (const geo_basic<T,M>& omega, Expr expr,
quadrature_option_type qopt)
template <class T, class M, class Expr>
field integrate (const geo_basic<T,M>& omega, VFExpr expr,
quadrature_option_type qopt)
template <class T, class M, class Expr>
form integrate (const geo_basic<T,M>& omega, VFExpr expr,
form_option_type fopt)
@end example
EXAMPLE:
@noindent
@example
Float f (const point& x);
...
quadrature_option_type qopt;
Float value = integrate (omega, f, qopt);
field lh = integrate (omega, f*v, qopt);
@end example
The last argument specifies the quadrature formulae used
for the computation of the integral.
The expression can be any function, classs-function or
any linear or nonlinear field expression @pxref{field class}.
DEFAULT ARGUMENTS:
In the case of a linear form, the domain is optional: by default it is
the full domain definition of the test function.
@example
field l1h = integrate (f*v, qopt);
@end example
When the integration is perfomed on a subdomain, this subdomain
simply replace the first argument and a domain name could also be used:
@example
field l2h = integrate (omega["boundary"], f*v, qopt);
field l3h = integrate ("boundary", f*v, qopt);
@end example
The quadrature formulae is required, except when a test and/or trial
function is provided in the expression to integrate.
In that case, the quadrature formulae is deduced from the space
containing the test (or trial) function.
When a test function is suppied, let k be its polynomial degree.
Then the default quadrature is
choosen to be exact at least for 2*k+1 polynoms.
When both a test and trial functions are suppied, let k1 and k2 be their polynomial degrees.
Then the default quadrature is
choosen to be exact at least for k1+k2+1 polynoms.
Also, when the expression is a constant, the quadrature function is optional:
in that case, the constant is also optional and the following call:
@example
Float meas = integrate (omega);
@end example
is valid and returns the measure of the domain.
End: */
// ----------------------------------------------
// variational integration
// ----------------------------------------------
template <class T, class M>
inline
field_basic<T,M>
integrate (const geo_basic<T,M>& domain, const test_basic<T,M,details::vf_tag_01>& expr,
const quadrature_option_type& qopt = quadrature_option_type())
{
field_basic<T,M> lh;
lh.assembly (domain, expr, qopt);
return lh;
}
template <class T, class M, class Expr>
inline
field_basic<T,M>
integrate (const geo_basic<T,M>& domain, const field_vf_expr<Expr>& expr,
const quadrature_option_type& qopt = quadrature_option_type())
{
field_basic<T,M> lh;
lh.assembly (domain, expr, qopt);
return lh;
}
template <class T, class M, class Expr>
inline
form_basic<T, M>
integrate (const geo_basic<T,M>& domain, const form_vf_expr<Expr>& expr,
const form_option_type& fopt = form_option_type())
{
form_basic<T,M> a;
a.assembly (domain, expr, fopt);
return a;
}
// ----------------------------------------------
// variational integration: missing domain
// ----------------------------------------------
template <class T, class M>
inline
field_basic<T,M>
integrate (const test_basic<T,M,details::vf_tag_01>& expr,
const quadrature_option_type& qopt = quadrature_option_type())
{
field_basic<T,M> lh;
lh.assembly (expr.get_vf_space().get_geo(), expr, qopt);
return lh;
}
template <class Expr>
inline
field_basic<typename field_vf_expr<Expr>::scalar_type, typename field_vf_expr<Expr>::memory_type>
integrate (const field_vf_expr<Expr>& expr,
const quadrature_option_type& qopt = quadrature_option_type())
{
typedef typename field_vf_expr<Expr>::scalar_type T;
typedef typename field_vf_expr<Expr>::memory_type M;
field_basic<T,M> lh;
lh.assembly (expr.get_vf_space().get_geo(), expr, qopt);
return lh;
}
template <class Expr>
inline
form_basic<typename form_vf_expr<Expr>::scalar_type, typename form_vf_expr<Expr>::memory_type>
integrate (const form_vf_expr<Expr>& expr,
const form_option_type& fopt = form_option_type())
{
// TODO: prendre le min de expr.get_test_space().get_geo() expr.get_trial_space().get_geo()
typedef typename field_vf_expr<Expr>::scalar_type T;
typedef typename field_vf_expr<Expr>::memory_type M;
form_basic<T,M> a;
a.assembly (expr.get_test_space().get_geo(), expr, fopt);
return a;
}
// ----------------------------------------------
// variational integration: subdomain by its name
// ----------------------------------------------
template <class T, class M>
inline
field_basic<T,M>
integrate (const std::string& domname, const test_basic<T,M,details::vf_tag_01>& expr,
const quadrature_option_type& qopt = quadrature_option_type())
{
field_basic<T,M> lh;
lh.assembly (expr.get_vf_space().get_geo()[domname], expr, qopt);
return lh;
}
template <class Expr>
inline
field_basic<typename field_vf_expr<Expr>::scalar_type, typename field_vf_expr<Expr>::memory_type>
integrate (const std::string& domname, const field_vf_expr<Expr>& expr,
const quadrature_option_type& qopt = quadrature_option_type())
{
typedef typename field_vf_expr<Expr>::scalar_type T;
typedef typename field_vf_expr<Expr>::memory_type M;
field_basic<T,M> lh;
lh.assembly (expr.get_vf_space().get_geo()[domname], expr, qopt);
return lh;
}
template <class Expr>
inline
form_basic<typename form_vf_expr<Expr>::scalar_type, typename form_vf_expr<Expr>::memory_type>
integrate (const std::string& domname, const form_vf_expr<Expr>& expr,
const form_option_type& fopt = form_option_type())
{
// TODO: prendre le max de expr.get_test_space().get_geo() expr.get_trial_space().get_geo() puis [domain]
typedef typename field_vf_expr<Expr>::scalar_type T;
typedef typename field_vf_expr<Expr>::memory_type M;
form_basic<T,M> a;
a.assembly (expr.get_test_space().get_geo()[domname], expr, fopt);
return a;
}
// ----------------------------------------------
// variational integration: on a band
// ----------------------------------------------
template <class T, class M>
inline
field_basic<T,M>
integrate (const band_basic<T,M>& gh, const test_basic<T,M,details::vf_tag_01>& expr,
const quadrature_option_type& qopt = quadrature_option_type())
{
field_basic<T,M> lh;
lh.assembly (gh, expr, qopt);
return lh;
}
template <class T, class M, class Expr>
inline
field_basic<T,M>
integrate (const band_basic<T,M>& gh, const field_vf_expr<Expr>& expr,
const quadrature_option_type& qopt = quadrature_option_type())
{
field_basic<T,M> lh;
lh.assembly (gh, expr, qopt);
return lh;
}
template <class T, class M, class Expr>
inline
form_basic<T, M>
integrate (const band_basic<T,M>& gh, const form_vf_expr<Expr>& expr,
const form_option_type& fopt = form_option_type())
{
form_basic<T,M> a;
a.assembly (gh, expr, fopt);
return a;
}
// ----------------------------------------------
// numeric integration
// ----------------------------------------------
template <class T, class M, class Function>
T integrate (const geo_basic<T,M>& dom, const field_functor<Function,T>& f, const quadrature_option_type& qopt)
{
typedef field_expr_terminal_function<Function> arg_t;
typedef field_nonlinear_expr<arg_t> expr_t;
return details::integrate_numeric (dom, expr_t(arg_t(f.get_ref())), qopt);
}
// Float r = integrate(omega); ICI
template <class T, class M>
T integrate (const geo_basic<T,M>& dom, const T& f = 1, const quadrature_option_type& qopt = quadrature_option_type())
{
typedef details::f_constant<point_basic<T>,T> f_cte_t;
typedef field_expr_terminal_function<f_cte_t> arg_t;
typedef field_nonlinear_expr<arg_t> expr_t;
f_cte_t f_cte (f);
return details::integrate_numeric (dom, expr_t(arg_t(f_cte)), qopt);
}
template <class T, class M>
T integrate (const geo_basic<T,M>& dom, T (*f)(const point_basic<T>&), const quadrature_option_type& qopt)
{
typedef T (*fun_t)(const point_basic<T>&);
typedef field_expr_terminal_function<fun_t> arg_t;
typedef field_nonlinear_expr<arg_t> expr_t;
return details::integrate_numeric (dom, expr_t(arg_t(f)), qopt);
}
template <class T, class M>
T integrate (const geo_basic<T,M>& dom, const field_basic<T,M>& f, const quadrature_option_type& qopt)
{
typedef field_expr_terminal_field<T,M> arg_t;
typedef field_nonlinear_expr<arg_t> expr_t;
return details::integrate_numeric (dom, expr_t(arg_t(f)), qopt);
}
template <class T, class M>
T integrate (const geo_basic<T,M>& dom, const field_indirect<T,M>& f, const quadrature_option_type& qopt)
{
typedef field_expr_terminal_field<T,M> arg_t;
typedef field_nonlinear_expr<arg_t> expr_t;
return details::integrate_numeric (dom, expr_t(arg_t(f)), qopt);
}
template <class T, class M>
T integrate (const geo_basic<T,M>& dom, const field_indirect_const<T,M>& f, const quadrature_option_type& qopt)
{
typedef field_expr_terminal_field<T,M> arg_t;
typedef field_nonlinear_expr<arg_t> expr_t;
return details::integrate_numeric (dom, expr_t(arg_t(f)), qopt);
}
template <class T, class M>
T integrate (const geo_basic<T,M>& dom, const field_component<T,M>& f, const quadrature_option_type& qopt)
{
typedef field_expr_terminal_field<T,M> arg_t;
typedef field_nonlinear_expr<arg_t> expr_t;
return details::integrate_numeric (dom, expr_t(arg_t(f)), qopt);
}
template <class T, class M>
T integrate (const geo_basic<T,M>& dom, const field_component_const<T,M>& f, const quadrature_option_type& qopt)
{
typedef field_expr_terminal_field<T,M> arg_t;
typedef field_nonlinear_expr<arg_t> expr_t;
return details::integrate_numeric (dom, expr_t(arg_t(f)), qopt);
}
template <class T, class M, class E>
T integrate (const geo_basic<T,M>& dom, const field_expr<E>& f, const quadrature_option_type& qopt)
{
typedef field_expr_terminal_field<T,M> arg_t;
typedef field_nonlinear_expr<arg_t> expr_t;
return details::integrate_numeric (dom, expr_t(arg_t(f)), qopt);
}
template <class T, class M, class E>
T integrate (const geo_basic<T,M>& dom, const field_nonlinear_expr<E>& f, const quadrature_option_type& qopt)
{
return details::integrate_numeric (dom, f, qopt);
}
}// namespace rheolef
#endif // _RHEO_INTEGRATE_H
|