/usr/include/rheolef/pgmres.h is in librheolef-dev 6.5-1+b1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 | # ifndef _SKIT_GMRES_H
# define _SKIT_GMRES_H
///
/// This file is part of Rheolef.
///
/// Copyright (C) 2000-2009 Pierre Saramito <Pierre.Saramito@imag.fr>
///
/// Rheolef is free software; you can redistribute it and/or modify
/// it under the terms of the GNU General Public License as published by
/// the Free Software Foundation; either version 2 of the License, or
/// (at your option) any later version.
///
/// Rheolef is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with Rheolef; if not, write to the Free Software
/// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
///
/// =========================================================================
#ifdef HAVE_CONFIG_H
#include "rheolef/compiler.h"
#endif
#include <cmath>
/*Class:pgmres
NAME: @code{pgmres} -- generalized minimum residual method
@findex qmr
@cindex generalized minimum residual method
@cindex iterative solver
SYNOPSIS:
@example
template <class Matrix, class Vector, class Preconditioner,
class SmallMatrix, class SmallVector, class Real, class Size>
int pgmres (const Matrix &A, Vector &x, const Vector &b, const Preconditioner &M,
SmallMatrix &H, const SmallVector& dummy,
Size m, Size &max_iter, Real &tol);
@end example
EXAMPLE:
@noindent
The simplest call to @code{pgmres} has the folling form:
@example
double tol = 1e-7;
size_t max_iter = 100;
size_t m = 6;
boost::numeric::ublas::matrix<double> H(m+1,m+1);
vec<double,sequential> dummy;
int status = pgmres (a, x, b, ic0(a), H, dummy, m, max_iter, tol);
@end example
DESCRIPTION:
@noindent
@code{pgmres} solves the unsymmetric linear system Ax = b
using the generalized minimum residual method.
@noindent
The return value indicates convergence within max_iter (input)
iterations (0), or no convergence within max_iter iterations (1).
Upon successful return, output arguments have the following values:
@table @code
@item x
approximate solution to Ax = b
@item max_iter
the number of iterations performed before the tolerance was reached
@item tol
the residual after the final iteration
@end table
@noindent
In addition, M specifies a preconditioner, H specifies a matrix
to hold the coefficients of the upper Hessenberg matrix constructed
by the @code{pgmres} iterations, @code{m} specifies the number of iterations
for each restart.
@noindent
@code{pgmres} requires two matrices as input, A and H.
The matrix A, which will typically be a sparse matrix) corresponds
to the matrix in the linear system Ax=b.
The matrix H, which will be typically a dense matrix, corresponds
to the upper Hessenberg matrix H that is constructed during the
@code{pgmres} iterations. Within @code{pgmres}, H is used in a different way
than A, so its class must supply different functionality.
That is, A is only accessed though its matrix-vector and
transpose-matrix-vector multiplication functions.
On the other hand, @code{pgmres} solves a dense upper triangular linear
system of equations on H. Therefore, the class
to which H belongs must provide H(i,j) operator for element acess.
NOTE:
@noindent
It is important to remember that we use the convention that indices
are 0-based. That is H(0,0) is the first component of the
matrix H. Also, the type of the matrix must be compatible with the
type of single vector entry. That is, operations such as
H(i,j)*x(j) must be able to be carried out.
@noindent
@code{pgmres} is an iterative template routine.
@noindent
@code{pgmres} follows the algorithm described on p. 20 in
@emph{Templates for the solution of linear systems: building blocks for iterative methods},
2nd Edition,
R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout,
R. Pozo, C. Romine, H. Van der Vorst,
SIAM, 1994,
@url{ftp.netlib.org/templates/templates.ps}.
@noindent
The present implementation is inspired from @code{IML++ 1.2} iterative method library,
@url{http://math.nist.gov/iml++}.
AUTHOR:
Pierre Saramito
| Pierre.Saramito@imag.fr
LMC-IMAG, 38041 Grenoble cedex 9, France
DATE:
12 march 1997
METHODS: @pgmres
End:
*/
// ========== [ method implementation ] ====================================
namespace rheolef {
//<pgmres:
template <class SmallMatrix, class Vector, class SmallVector, class Size>
void
Update(Vector &x, Size k, SmallMatrix &h, SmallVector &s, Vector v[])
{
SmallVector y = s;
// Back solve:
for (int i = k; i >= 0; i--) {
y(i) /= h(i,i);
for (int j = i - 1; j >= 0; j--)
y(j) -= h(j,i) * y(i);
}
for (Size j = 0; j <= k; j++) {
x += v[j] * y(j);
}
}
template<class Real>
void GeneratePlaneRotation(Real &dx, Real &dy, Real &cs, Real &sn)
{
if (dy == Real(0)) {
cs = 1.0;
sn = 0.0;
} else if (abs(dy) > abs(dx)) {
Real temp = dx / dy;
sn = 1.0 / ::sqrt( 1.0 + temp*temp );
cs = temp * sn;
} else {
Real temp = dy / dx;
cs = 1.0 / ::sqrt( 1.0 + temp*temp );
sn = temp * cs;
}
}
template<class Real>
void ApplyPlaneRotation(Real &dx, Real &dy, Real &cs, Real &sn)
{
Real temp = cs * dx + sn * dy;
dy = -sn * dx + cs * dy;
dx = temp;
}
template <class Matrix, class Vector, class Preconditioner,
class SmallMatrix, class SmallVector, class Real, class Size>
int
pgmres (const Matrix &A, Vector &x, const Vector &b, const Preconditioner &M,
SmallMatrix &H, const SmallVector&, const Size &m, Size &max_iter, Real &tol)
{
odiststream* p_derr = &derr;
std::string label = "pgmres";
if (p_derr) (*p_derr) << "[" << label << "] #iteration residue" << std::endl;
Vector w;
SmallVector s(m+1), cs(m+1), sn(m+1);
Size i;
Size j = 1;
Size k;
Real resid;
Real normb = norm(M.solve(b));
Vector r = M.solve(b - A * x);
Real beta = norm(r);
if (normb == Real(0)) {
normb = 1;
}
resid = norm(r) / normb;
if (resid <= tol) {
tol = resid;
max_iter = 0;
return 0;
}
Vector *v = new Vector[m+1];
while (j <= max_iter) {
v[0] = r * (1.0 / beta); // ??? r / beta
s = 0.0;
s(0) = beta;
for (i = 0; i < m && j <= max_iter; i++, j++) {
w = M.solve(A * v[i]);
for (k = 0; k <= i; k++) {
H(k, i) = dot(w, v[k]);
w -= H(k, i) * v[k];
}
H(i+1, i) = norm(w);
v[i+1] = w * (1.0 / H(i+1, i)); // ??? w / H(i+1, i)
for (k = 0; k < i; k++) {
ApplyPlaneRotation(H(k,i), H(k+1,i), cs(k), sn(k));
}
GeneratePlaneRotation(H(i,i), H(i+1,i), cs(i), sn(i));
ApplyPlaneRotation(H(i,i), H(i+1,i), cs(i), sn(i));
ApplyPlaneRotation(s(i), s(i+1), cs(i), sn(i));
resid = abs(s(i+1)) / normb;
if (p_derr) (*p_derr) << "[" << label << "] " << j << " " << resid << std::endl;
if (resid < tol) {
Update(x, i, H, s, v);
tol = resid;
max_iter = j;
delete [] v;
return 0;
}
}
Update(x, m - 1, H, s, v);
r = M.solve(b - A * x);
beta = norm(r);
resid = beta / normb;
if (p_derr) (*p_derr) << "[" << label << "] " << j << " " << resid << std::endl;
if (resid < tol) {
tol = resid;
max_iter = j;
delete [] v;
return 0;
}
}
tol = resid;
delete [] v;
return 1;
}
//>pgmres:
}// namespace rheolef
# endif // _SKIT_GMRES_H
|