3.13.0-57.95
) is not available, but a newer one is (3.13.0-166.216
). We redirected you there.
/usr/include/rheolef/tqli.h is in librheolef-dev 6.5-1+b1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 | ///
/// This file is part of Rheolef.
///
/// Copyright (C) 2000-2009 Pierre Saramito <Pierre.Saramito@imag.fr>
///
/// Rheolef is free software; you can redistribute it and/or modify
/// it under the terms of the GNU General Public License as published by
/// the Free Software Foundation; either version 2 of the License, or
/// (at your option) any later version.
///
/// Rheolef is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with Rheolef; if not, write to the Free Software
/// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
///
/// =========================================================================
#include "rheolef/compiler.h"
#include <iterator>
#include <iostream>
#include "rheolef/pythag.h"
template <class T>
inline T SIGN(T a, T b) { return b >= T(0) ? std::fabs(a) : -std::fabs(a); }
template <class Iterator1, class Iterator2, class Size>
void tqli (Iterator1 d, Iterator2 e, Size n)
{
typedef typename std::iterator_traits<Iterator1>::value_type T;
Size m,l,iter,i;
T s,r,p,g,f,dd,c,b;
for (i=2;i<=n;i++) e[i-1]=e[i];
e[n]=0.0;
for (l=1;l<=n;l++) {
iter=0;
do {
for (m=l;m<=n-1;m++) {
dd=std::fabs(d[m])+std::fabs(d[m+1]);
if ((T)(std::fabs(e[m])+dd) == dd) break;
}
if (m != l) {
iter++;
if (iter == 30) { std::cerr << "Too many iterations in tqli\n"; exit(1); }
g=(d[l+1]-d[l])/(2.0*e[l]);
r=pythag(g,T(1));
g=d[m]-d[l]+e[l]/(g+SIGN(r,g));
s=c=1.0;
p=0.0;
for (i=m-1;i>=l;i--) {
f=s*e[i];
b=c*e[i];
e[i+1]=(r=pythag(f,g));
if (r == T(0)) {
d[i+1] -= p;
e[m]=0.0;
break;
}
s=f/r;
c=g/r;
g=d[i+1]-p;
r=(d[i]-g)*s+2.0*c*b;
d[i+1]=g+(p=s*r);
g=c*r-b;
}
if (r == T(0) && i >= l) continue;
d[l] -= p;
e[l]=g;
e[m]=0.0;
}
} while (m != l);
}
}
|