/usr/include/root/TGeoHype.h is in libroot-geom-dev 5.34.19+dfsg-1.2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 | // @(#)root/geom:$Id$
// Author: Mihaela Gheata 20/11/04
/*************************************************************************
* Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. *
* All rights reserved. *
* *
* For the licensing terms see $ROOTSYS/LICENSE. *
* For the list of contributors see $ROOTSYS/README/CREDITS. *
*************************************************************************/
#ifndef ROOT_TGeoHype
#define ROOT_TGeoHype
#ifndef ROOT_TGeoTube
#include "TGeoTube.h"
#endif
///////////////////////////////////////////////////////////////////////////////
//
// TGeoHype - Hyperboloid class defined by 5 parameters. Bounded by:
// - Two z planes at z=+/-dz
// - Inner and outer lateral surfaces. These represent the surfaces
// described by the revolution of 2 hyperbolas about the Z axis:
// r^2 - (t*z)^2 = a^2
//
// r = distance between hyperbola and Z axis at coordinate z
// t = tangent of the stereo angle (angle made by hyperbola
// asimptotic lines and Z axis). t=0 means cylindrical surface.
// a = distance between hyperbola and Z axis at z=0
//
// The inner hyperbolic surface is described by:
// r^2 - (tin*z)^2 = rin^2
// - absence of the inner surface (filled hyperboloid can be forced
// by rin=0 and sin=0
// The outer hyperbolic surface is described by:
// r^2 - (tout*z)^2 = rout^2
// TGeoHype parameters: dz[cm], rin[cm], sin[deg], rout[cm], sout[deg].
// MANDATORY conditions:
// - rin < rout
// - rout > 0
// - rin^2 + (tin*dz)^2 > rout^2 + (tout*dz)^2
//
///////////////////////////////////////////////////////////////////////////////
class TGeoHype : public TGeoTube
{
protected :
// data members inherited from TGeoTube:
// Double_t fRmin; // inner radius at z=0
// Double_t fRmax; // outer radius at z=0
// Double_t fDz; // half length
Double_t fStIn; // Stereo angle for inner surface
Double_t fStOut; // Stereo angle for inner surface
private :
// Precomputed parameters:
Double_t fTin; // Tangent of stereo angle for inner surface
Double_t fTout; // Tangent of stereo angle for outer surface
Double_t fTinsq; // Squared tangent of stereo angle for inner surface
Double_t fToutsq; // Squared tangent of stereo angle for outer surface
public:
// constructors
TGeoHype();
TGeoHype(Double_t rin, Double_t stin, Double_t rout, Double_t stout, Double_t dz);
TGeoHype(const char *name, Double_t rin, Double_t stin, Double_t rout, Double_t stout, Double_t dz);
TGeoHype(Double_t *params);
// destructor
virtual ~TGeoHype();
// methods
virtual Double_t Capacity() const;
virtual void ComputeBBox();
virtual void ComputeNormal(const Double_t *point, const Double_t *dir, Double_t *norm);
virtual void ComputeNormal_v(const Double_t *points, const Double_t *dirs, Double_t *norms, Int_t vecsize);
virtual Bool_t Contains(const Double_t *point) const;
virtual void Contains_v(const Double_t *points, Bool_t *inside, Int_t vecsize) const;
virtual Double_t DistFromInside(const Double_t *point, const Double_t *dir, Int_t iact=1,
Double_t step=TGeoShape::Big(), Double_t *safe=0) const;
virtual void DistFromInside_v(const Double_t *points, const Double_t *dirs, Double_t *dists, Int_t vecsize, Double_t *step) const;
virtual Double_t DistFromOutside(const Double_t *point, const Double_t *dir, Int_t iact=1,
Double_t step=TGeoShape::Big(), Double_t *safe=0) const;
virtual void DistFromOutside_v(const Double_t *points, const Double_t *dirs, Double_t *dists, Int_t vecsize, Double_t *step) const;
Int_t DistToHype(const Double_t *point, const Double_t *dir, Double_t *s, Bool_t inner, Bool_t in) const;
virtual Int_t DistancetoPrimitive(Int_t px, Int_t py);
virtual TGeoVolume *Divide(TGeoVolume *voldiv, const char *divname, Int_t iaxis, Int_t ndiv,
Double_t start, Double_t step);
virtual Double_t GetAxisRange(Int_t iaxis, Double_t &xlo, Double_t &xhi) const;
virtual void GetBoundingCylinder(Double_t *param) const;
virtual const TBuffer3D &GetBuffer3D(Int_t reqSections, Bool_t localFrame) const;
virtual Int_t GetByteCount() const {return 64;}
virtual Bool_t GetPointsOnSegments(Int_t /*npoints*/, Double_t * /*array*/) const {return kFALSE;}
virtual TGeoShape *GetMakeRuntimeShape(TGeoShape *mother, TGeoMatrix *mat) const;
virtual void GetMeshNumbers(Int_t &nvert, Int_t &nsegs, Int_t &npols) const;
virtual Int_t GetNmeshVertices() const;
Double_t GetStIn() const {return fStIn;}
Double_t GetStOut() const {return fStOut;}
Bool_t HasInner() const {return !TestShapeBit(kGeoRSeg);}
Double_t RadiusHypeSq(Double_t z, Bool_t inner) const;
Double_t ZHypeSq(Double_t r, Bool_t inner) const;
virtual void InspectShape() const;
virtual Bool_t IsCylType() const {return kTRUE;}
virtual TBuffer3D *MakeBuffer3D() const;
//virtual void Paint(Option_t *option);
virtual Double_t Safety(const Double_t *point, Bool_t in=kTRUE) const;
virtual void Safety_v(const Double_t *points, const Bool_t *inside, Double_t *safe, Int_t vecsize) const;
Double_t SafetyToHype(const Double_t *point, Bool_t inner, Bool_t in) const;
virtual void SavePrimitive(std::ostream &out, Option_t *option = "");
void SetHypeDimensions(Double_t rin, Double_t stin, Double_t rout, Double_t stout, Double_t dz);
virtual void SetDimensions(Double_t *param);
virtual void SetPoints(Double_t *points) const;
virtual void SetPoints(Float_t *points) const;
virtual void SetSegsAndPols(TBuffer3D &buff) const;
virtual void Sizeof3D() const;
ClassDef(TGeoHype, 1) // hyperboloid class
};
#endif
|