This file is indexed.

/usr/include/root/TSpectrumFit.h is in libroot-hist-spectrum-dev 5.34.19+dfsg-1.2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
// @(#)root/spectrum:$Id$
// Author: Miroslav Morhac   25/09/06

/*************************************************************************
 * Copyright (C) 1995-2006, Rene Brun and Fons Rademakers.               *
 * All rights reserved.                                                  *
 *                                                                       *
 * For the licensing terms see $ROOTSYS/LICENSE.                         *
 * For the list of contributors see $ROOTSYS/README/CREDITS.             *
 *************************************************************************/
#ifndef ROOT_TSpectrumFit
#define ROOT_TSpectrumFit

//////////////////////////////////////////////////////////////////////////
//                                                                      //
// TSpectrumFit                                                         //
//                                                                      //
// Class for fitting 1D spectra using AWMI (algorithm without matrix    //
// inversion) and conjugate gradient algorithms for symmetrical         //
// matrices (Stiefel-Hestens method). AWMI method allows to fit         //
// simulaneously 100s up to 1000s peaks. Stiefel method is very stable, //
// it converges faster, but is more time consuming                      //
//                                                                      //
//////////////////////////////////////////////////////////////////////////

#ifndef ROOT_TNamed
#include "TNamed.h"
#endif

class TH1;

class TSpectrumFit : public TNamed {
protected:
   Int_t     fNPeaks;                    //number of peaks present in fit, input parameter, it should be > 0
   Int_t     fNumberIterations;          //number of iterations in fitting procedure, input parameter, it should be > 0
   Int_t     fXmin;                      //first fitted channel
   Int_t     fXmax;                      //last fitted channel
   Int_t     fStatisticType;             //type of statistics, possible values kFitOptimChiCounts (chi square statistics with counts as weighting coefficients), kFitOptimChiFuncValues (chi square statistics with function values as weighting coefficients),kFitOptimMaxLikelihood
   Int_t     fAlphaOptim;                //optimization of convergence algorithm, possible values kFitAlphaHalving, kFitAlphaOptimal
   Int_t     fPower;                     //possible values kFitPower2,4,6,8,10,12, for details see references. It applies only for Awmi fitting function.
   Int_t     fFitTaylor;                 //order of Taylor expansion, possible values kFitTaylorOrderFirst, kFitTaylorOrderSecond. It applies only for Awmi fitting function.
   Double_t  fAlpha;                     //convergence coefficient, input parameter, it should be positive number and <=1, for details see references
   Double_t  fChi;                       //here the fitting functions return resulting chi square   
   Double_t *fPositionInit;              //[fNPeaks] array of initial values of peaks positions, input parameters
   Double_t *fPositionCalc;              //[fNPeaks] array of calculated values of fitted positions, output parameters
   Double_t *fPositionErr;               //[fNPeaks] array of position errors
   Double_t *fAmpInit;                   //[fNPeaks] array of initial values of peaks amplitudes, input parameters
   Double_t *fAmpCalc;                   //[fNPeaks] array of calculated values of fitted amplitudes, output parameters
   Double_t *fAmpErr;                    //[fNPeaks] array of amplitude errors
   Double_t *fArea;                      //[fNPeaks] array of calculated areas of peaks
   Double_t *fAreaErr;                   //[fNPeaks] array of errors of peak areas
   Double_t  fSigmaInit;                 //initial value of sigma parameter
   Double_t  fSigmaCalc;                 //calculated value of sigma parameter
   Double_t  fSigmaErr;                  //error value of sigma parameter
   Double_t  fTInit;                     //initial value of t parameter (relative amplitude of tail), for details see html manual and references
   Double_t  fTCalc;                     //calculated value of t parameter
   Double_t  fTErr;                      //error value of t parameter
   Double_t  fBInit;                     //initial value of b parameter (slope), for details see html manual and references
   Double_t  fBCalc;                     //calculated value of b parameter
   Double_t  fBErr;                      //error value of b parameter
   Double_t  fSInit;                     //initial value of s parameter (relative amplitude of step), for details see html manual and references
   Double_t  fSCalc;                     //calculated value of s parameter
   Double_t  fSErr;                      //error value of s parameter
   Double_t  fA0Init;                    //initial value of background a0 parameter(background is estimated as a0+a1*x+a2*x*x)
   Double_t  fA0Calc;                    //calculated value of background a0 parameter
   Double_t  fA0Err;                     //error value of background a0 parameter
   Double_t  fA1Init;                    //initial value of background a1 parameter(background is estimated as a0+a1*x+a2*x*x)
   Double_t  fA1Calc;                    //calculated value of background a1 parameter
   Double_t  fA1Err;                     //error value of background a1 parameter
   Double_t  fA2Init;                    //initial value of background a2 parameter(background is estimated as a0+a1*x+a2*x*x)
   Double_t  fA2Calc;                    //calculated value of background a2 parameter
   Double_t  fA2Err;                     //error value of background a2 parameter
   Bool_t   *fFixPosition;               //[fNPeaks] array of logical values which allow to fix appropriate positions (not fit). However they are present in the estimated functional   
   Bool_t   *fFixAmp;                    //[fNPeaks] array of logical values which allow to fix appropriate amplitudes (not fit). However they are present in the estimated functional      
   Bool_t    fFixSigma;                  //logical value of sigma parameter, which allows to fix the parameter (not to fit).   
   Bool_t    fFixT;                      //logical value of t parameter, which allows to fix the parameter (not to fit).      
   Bool_t    fFixB;                      //logical value of b parameter, which allows to fix the parameter (not to fit).   
   Bool_t    fFixS;                      //logical value of s parameter, which allows to fix the parameter (not to fit).      
   Bool_t    fFixA0;                     //logical value of a0 parameter, which allows to fix the parameter (not to fit).
   Bool_t    fFixA1;                     //logical value of a1 parameter, which allows to fix the parameter (not to fit).   
   Bool_t    fFixA2;                     //logical value of a2 parameter, which allows to fix the parameter (not to fit).

public:
   enum {
       kFitOptimChiCounts =0,
       kFitOptimChiFuncValues =1,
       kFitOptimMaxLikelihood =2,
       kFitAlphaHalving =0,
       kFitAlphaOptimal =1,
       kFitPower2 =2,
       kFitPower4 =4,
       kFitPower6 =6,
       kFitPower8 =8,
       kFitPower10 =10,
       kFitPower12 =12,
       kFitTaylorOrderFirst =0,
       kFitTaylorOrderSecond =1,
       kFitNumRegulCycles =100
   };
   TSpectrumFit(void); //default constructor     
   TSpectrumFit(Int_t numberPeaks); 
   virtual ~TSpectrumFit();

   //auxiliary functions for 1. parameter fit functions
protected:   
   Double_t            Area(Double_t a,Double_t sigma,Double_t t,Double_t b);
   Double_t            Dera1(Double_t i);
   Double_t            Dera2(Double_t i);
   Double_t            Deramp(Double_t i,Double_t i0,Double_t sigma,Double_t t,Double_t s,Double_t b);   
   Double_t            Derb(Int_t num_of_fitted_peaks,Double_t i,const Double_t* parameter,Double_t sigma,Double_t t,Double_t b);
   Double_t            Derderi0(Double_t i,Double_t amp,Double_t i0,Double_t sigma);
   Double_t            Derdersigma(Int_t num_of_fitted_peaks,Double_t i,const Double_t* parameter,Double_t sigma);
   Double_t            Derfc(Double_t x);
   Double_t            Deri0(Double_t i,Double_t amp,Double_t i0,Double_t sigma,Double_t t,Double_t s,Double_t b);   
   Double_t            Derpa(Double_t sigma,Double_t t,Double_t b);
   Double_t            Derpb(Double_t a,Double_t sigma,Double_t t,Double_t b);
   Double_t            Derpsigma(Double_t a,Double_t t,Double_t b);
   Double_t            Derpt(Double_t a,Double_t sigma,Double_t b);
   Double_t            Ders(Int_t num_of_fitted_peaks,Double_t i,const Double_t* parameter,Double_t sigma);
   Double_t            Dersigma(Int_t num_of_fitted_peaks,Double_t i,const Double_t* parameter,Double_t sigma,Double_t t,Double_t s,Double_t b);
   Double_t            Dert(Int_t num_of_fitted_peaks,Double_t i,const Double_t* parameter,Double_t sigma,Double_t b);
   Double_t            Erfc(Double_t x);
   Double_t            Ourpowl(Double_t a,Int_t pw);   
   Double_t            Shape(Int_t num_of_fitted_peaks,Double_t i,const Double_t *parameter,Double_t sigma,Double_t t,Double_t s,Double_t b,Double_t a0,Double_t a1,Double_t a2);
   void                StiefelInversion(Double_t **a,Int_t rozmer);

public:
   void                FitAwmi(float *source); 
   void                FitStiefel(float *source); 
   Double_t           *GetAmplitudes() const {return fAmpCalc;}   
   Double_t           *GetAmplitudesErrors() const {return fAmpErr;}
   Double_t           *GetAreas() const {return fArea;}            
   Double_t           *GetAreasErrors() const {return fAreaErr;}               
   void                GetBackgroundParameters(Double_t &a0, Double_t &a0Err, Double_t &a1, Double_t &a1Err, Double_t &a2, Double_t &a2Err);
   Double_t            GetChi() const {return fChi;}
   Double_t           *GetPositions() const {return fPositionCalc;}
   Double_t           *GetPositionsErrors() const {return fPositionErr;}   
   void                GetSigma(Double_t &sigma, Double_t &sigmaErr);
   void                GetTailParameters(Double_t &t, Double_t &tErr, Double_t &b, Double_t &bErr, Double_t &s, Double_t &sErr);
   void                SetBackgroundParameters(Double_t a0Init, Bool_t fixA0, Double_t a1Init, Bool_t fixA1, Double_t a2Init, Bool_t fixA2);
   void                SetFitParameters(Int_t xmin,Int_t xmax, Int_t numberIterations, Double_t alpha, Int_t statisticType, Int_t alphaOptim, Int_t power, Int_t fitTaylor);
   void                SetPeakParameters(Double_t sigma, Bool_t fixSigma, const Float_t *positionInit, const Bool_t *fixPosition, const Float_t *ampInit, const Bool_t *fixAmp);    
   void                SetTailParameters(Double_t tInit, Bool_t fixT, Double_t bInit, Bool_t fixB, Double_t sInit, Bool_t fixS); 

   ClassDef(TSpectrumFit,1)  //Spectrum Fitter using algorithm without matrix inversion and conjugate gradient method for symmetrical matrices (Stiefel-Hestens method)
};

#endif