This file is indexed.

/usr/include/root/TRolke.h is in libroot-math-physics-dev 5.34.19+dfsg-1.2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
//////////////////////////////////////////////////////////////////////////////
//
//  TRolke
//
//  This class computes confidence intervals for the rate of a Poisson
//  in the presence of background and efficiency with a fully frequentist
//  treatment of the uncertainties in the efficiency and background estimate
//  using the profile likelihood method.
//
//      Author: Jan Conrad (CERN) 2004
//      Updated: Johan Lundberg (CERN) 2009
//
//      Copyright CERN 2004,2009           Jan.Conrad@cern.ch,
//                                     Johan.Lundberg@cern.ch
//
//  For information about the statistical meaning of the parameters
//  and the syntax, consult TRolke.cxx
//                  ------------------
//
//  Examples are found in the file Rolke.C
//  --------------------------------------
//
//////////////////////////////////////////////////////////////////////////////

#ifndef ROOT_TRolke
#define ROOT_TRolke

#include "TObject.h"
#include "TMath.h"

// Class definition. This class is not intended to be used as a base class.
class TRolke : public TObject
{

private:
   Double_t fCL;         // confidence level as a fraction [0.9 for 90% ]
   Double_t fUpperLimit; // the calculated upper limit
   Double_t fLowerLimit; // the calculated lower limit
   bool fBounding;       // false for unbounded likelihood
                         // true for bounded likelihood   
   Int_t fNumWarningsDeprecated1;
   Int_t fNumWarningsDeprecated2;

   /* ----------------------------------------------------------------- */
   /* These variables are set by the Set methods for the various models */
   Int_t f_x;
   Int_t f_y;
   Int_t f_z;
   Double_t f_bm;
   Double_t f_em;
   Double_t f_e;
   Int_t f_mid;
   Double_t f_sde;
   Double_t f_sdb;
   Double_t f_tau;
   Double_t f_b;
   Int_t f_m;

   /* ----------------------------------------------------------------- */
   /* Internal helper functions and methods */
   // The Calculator
   Double_t Interval(Int_t x, Int_t y, Int_t z, Double_t bm, Double_t em, Double_t e, Int_t mid, Double_t sde, Double_t sdb, Double_t tau, Double_t b, Int_t m);

   // LIKELIHOOD ROUTINE
   Double_t Likelihood(Double_t mu, Int_t x, Int_t y, Int_t z, Double_t bm, Double_t em, Int_t mid, Double_t sde, Double_t sdb, Double_t tau, Double_t b, Int_t m, Int_t what);

   //MODEL 1
   Double_t EvalLikeMod1(Double_t mu, Int_t x, Int_t y, Int_t z, Double_t tau, Int_t m, Int_t what);
   Double_t LikeMod1(Double_t mu, Double_t b, Double_t e, Int_t x, Int_t y, Int_t z, Double_t tau, Int_t m);
   void     ProfLikeMod1(Double_t mu, Double_t &b, Double_t &e, Int_t x, Int_t y, Int_t z, Double_t tau, Int_t m);
   Double_t LikeGradMod1(Double_t e, Double_t mu, Int_t x, Int_t y, Int_t z, Double_t tau, Int_t m);

   //MODEL 2
   Double_t EvalLikeMod2(Double_t mu, Int_t x, Int_t y, Double_t em, Double_t sde, Double_t tau, Int_t what);

   Double_t LikeMod2(Double_t mu, Double_t b, Double_t e, Int_t x, Int_t y, Double_t em, Double_t tau, Double_t v);

   //MODEL 3
   Double_t EvalLikeMod3(Double_t mu, Int_t x, Double_t bm, Double_t em, Double_t sde, Double_t sdb, Int_t what);
   Double_t LikeMod3(Double_t mu, Double_t b, Double_t e, Int_t x, Double_t bm, Double_t em, Double_t u, Double_t v);

   //MODEL 4
   Double_t EvalLikeMod4(Double_t mu, Int_t x, Int_t y, Double_t tau, Int_t what);
   Double_t LikeMod4(Double_t mu, Double_t b, Int_t x, Int_t y, Double_t tau);

   //MODEL 5
   Double_t EvalLikeMod5(Double_t mu, Int_t x, Double_t bm, Double_t sdb, Int_t what);
   Double_t LikeMod5(Double_t mu, Double_t b, Int_t x, Double_t bm, Double_t u);

   //MODEL 6
   Double_t EvalLikeMod6(Double_t mu, Int_t x, Int_t z, Double_t b, Int_t m, Int_t what);
   Double_t LikeMod6(Double_t mu, Double_t b, Double_t e, Int_t x, Int_t z, Int_t m);

   //MODEL 7
   Double_t EvalLikeMod7(Double_t mu, Int_t x, Double_t em, Double_t sde, Double_t b, Int_t what);
   Double_t LikeMod7(Double_t mu, Double_t b, Double_t e, Int_t x, Double_t em, Double_t v);

   //MISC
   static Double_t EvalPolynomial(Double_t x, const Int_t coef[], Int_t N);
   static Double_t EvalMonomial(Double_t x, const Int_t coef[], Int_t N);
   Double_t LogFactorial(Int_t n);

   Double_t ComputeInterval(Int_t x, Int_t y, Int_t z, Double_t bm, Double_t em, Double_t e, Int_t mid, Double_t sde, Double_t sdb, Double_t tau, Double_t b, Int_t m);

   void SetModelParameters(Int_t x, Int_t y, Int_t z, Double_t bm, Double_t em, Double_t e, Int_t mid, Double_t sde, Double_t sdb, Double_t tau, Double_t b, Int_t m);

   void SetModelParameters();

   Double_t GetBackground();

public:

   /* Constructor */
   TRolke(Double_t CL = 0.9, Option_t *option = "");

   /* Destructor */
   virtual ~TRolke();

   /* Get and set the Confidence Level */
   Double_t GetCL() const         {
      return fCL;
   }
   void     SetCL(Double_t CL)  {
      fCL = CL;
   }

   /* Set the Confidence Level in terms of Sigmas. */
   void SetCLSigmas(Double_t CLsigmas) {
      fCL = TMath::Erf(CLsigmas / TMath::Sqrt(2.0)) ;
   }
   
   // The Set methods for the different models are described in Rolke.cxx
   // model 1
   void SetPoissonBkgBinomEff(Int_t x, Int_t y, Int_t z, Double_t tau, Int_t m);

   // model 2
   void SetPoissonBkgGaussEff(Int_t x, Int_t y, Double_t em, Double_t tau, Double_t sde);

   // model 3
   void SetGaussBkgGaussEff(Int_t x, Double_t bm, Double_t em, Double_t sde, Double_t sdb);

   // model 4
   void SetPoissonBkgKnownEff(Int_t x, Int_t y, Double_t tau, Double_t e);

   // model 5
   void SetGaussBkgKnownEff(Int_t x, Double_t bm, Double_t sdb, Double_t e);

   // model 6
   void SetKnownBkgBinomEff(Int_t x, Int_t z, Int_t m, Double_t b);

   // model 7
   void SetKnownBkgGaussEff(Int_t x, Double_t em, Double_t sde, Double_t b);

   /* Deprecated interface method (read Rolke.cxx). May be removed from future releases */
   Double_t CalculateInterval(Int_t x, Int_t y, Int_t z, Double_t bm, Double_t em, Double_t e, Int_t mid, Double_t sde, Double_t sdb, Double_t tau, Double_t b, Int_t m);

   // get the upper and lower limits based on the specified model
   bool GetLimits(Double_t& low, Double_t& high);
   Double_t GetUpperLimit();
   Double_t GetLowerLimit();

   // get the upper and lower average limits
   bool GetSensitivity(Double_t& low, Double_t& high, Double_t pPrecision = 0.00001);

   // get the upper and lower limits for the outcome corresponding to
   // a given quantile.
   bool GetLimitsQuantile(Double_t& low, Double_t& high, Int_t& out_x, Double_t integral = 0.5);

   // get the upper and lower limits for the most likely outcome.
   bool GetLimitsML(Double_t& low, Double_t& high, Int_t& out_x);

   // get the value of x corresponding to rejection of the null hypothesis.
   bool GetCriticalNumber(Int_t& ncrit,Int_t maxtry=-1);

   /* Get the bounding mode flag. True activates bounded mode. Read
      TRolke.cxx and the references therein for details. */
   bool GetBounding() const {
      return fBounding;
   }

   /* Get the bounding mode flag. True activates bounded mode. Read
      TRolke.cxx and the references therein for details. */
   void SetBounding(const bool bnd) {
      fBounding = bnd;
   }

   /* Deprecated name for SetBounding. */
   void SetSwitch(bool bnd) ;

   /* Dump internals. Option is not used */
   void Print(Option_t*) const;

   ClassDef(TRolke, 2)
};

//calculate confidence limits using the Rolke method
#endif