This file is indexed.

/usr/include/root/TVector3.h is in libroot-math-physics-dev 5.34.19+dfsg-1.2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
// @(#)root/physics:$Id$
// Author: Pasha Murat, Peter Malzacher   12/02/99

/*************************************************************************
 * Copyright (C) 1995-2000, Rene Brun and Fons Rademakers.               *
 * All rights reserved.                                                  *
 *                                                                       *
 * For the licensing terms see $ROOTSYS/LICENSE.                         *
 * For the list of contributors see $ROOTSYS/README/CREDITS.             *
 *************************************************************************/
#ifndef ROOT_TVector3
#define ROOT_TVector3

#ifndef ROOT_TError
#include "TError.h"
#endif
#ifndef ROOT_TVector2
#include "TVector2.h"
#endif
#ifndef ROOT_TMatrix
#include "TMatrix.h"
#endif

class TRotation;


class TVector3 : public TObject {

public:

   typedef Double_t Scalar;   // to be able to use it with the ROOT::Math::VectorUtil functions

   TVector3();

   TVector3(Double_t x, Double_t y, Double_t z);
   // The constructor.

   TVector3(const Double_t *);
   TVector3(const Float_t *);
   // Constructors from an array

   TVector3(const TVector3 &);
   // The copy constructor.

   virtual ~TVector3();
   // Destructor

   Double_t operator () (int) const;
   inline Double_t operator [] (int) const;
   // Get components by index (Geant4).

   Double_t & operator () (int);
   inline Double_t & operator [] (int);
   // Set components by index.

   inline Double_t x()  const;
   inline Double_t y()  const;
   inline Double_t z()  const;
   inline Double_t X()  const;
   inline Double_t Y()  const;
   inline Double_t Z()  const;
   inline Double_t Px() const;
   inline Double_t Py() const;
   inline Double_t Pz() const;
   // The components in cartesian coordinate system.

   inline void SetX(Double_t);
   inline void SetY(Double_t);
   inline void SetZ(Double_t);
   inline void SetXYZ(Double_t x, Double_t y, Double_t z);
   void        SetPtEtaPhi(Double_t pt, Double_t eta, Double_t phi);
   void        SetPtThetaPhi(Double_t pt, Double_t theta, Double_t phi);

   inline void GetXYZ(Double_t *carray) const;
   inline void GetXYZ(Float_t *carray) const;
   // Get the components into an array
   // not checked!

   Double_t Phi() const;
   // The azimuth angle. returns phi from -pi to pi

   Double_t Theta() const;
   // The polar angle.

   inline Double_t CosTheta() const;
   // Cosine of the polar angle.

   inline Double_t Mag2() const;
   // The magnitude squared (rho^2 in spherical coordinate system).

   Double_t Mag() const;
   // The magnitude (rho in spherical coordinate system).

   void SetPhi(Double_t);
   // Set phi keeping mag and theta constant (BaBar).

   void SetTheta(Double_t);
   // Set theta keeping mag and phi constant (BaBar).

   inline void SetMag(Double_t);
   // Set magnitude keeping theta and phi constant (BaBar).

   inline Double_t Perp2() const;
   // The transverse component squared (R^2 in cylindrical coordinate system).

   inline Double_t Pt() const;
   Double_t Perp() const;
   // The transverse component (R in cylindrical coordinate system).

   inline void SetPerp(Double_t);
   // Set the transverse component keeping phi and z constant.

   inline Double_t Perp2(const TVector3 &) const;
   // The transverse component w.r.t. given axis squared.

   inline Double_t Pt(const TVector3 &) const;
   Double_t Perp(const TVector3 &) const;
   // The transverse component w.r.t. given axis.

   inline Double_t DeltaPhi(const TVector3 &) const;
   Double_t DeltaR(const TVector3 &) const;
   inline Double_t DrEtaPhi(const TVector3 &) const;
   inline TVector2 EtaPhiVector() const;
   void SetMagThetaPhi(Double_t mag, Double_t theta, Double_t phi);

   inline TVector3 & operator = (const TVector3 &);
   // Assignment.

   inline Bool_t operator == (const TVector3 &) const;
   inline Bool_t operator != (const TVector3 &) const;
   // Comparisons (Geant4).

   inline TVector3 & operator += (const TVector3 &);
   // Addition.

   inline TVector3 & operator -= (const TVector3 &);
   // Subtraction.

   inline TVector3 operator - () const;
   // Unary minus.

   inline TVector3 & operator *= (Double_t);
   // Scaling with real numbers.

   TVector3 Unit() const;
   // Unit vector parallel to this.

   inline TVector3 Orthogonal() const;
   // Vector orthogonal to this (Geant4).

   inline Double_t Dot(const TVector3 &) const;
   // Scalar product.

   inline TVector3 Cross(const TVector3 &) const;
   // Cross product.

   Double_t Angle(const TVector3 &) const;
   // The angle w.r.t. another 3-vector.

   Double_t PseudoRapidity() const;
   // Returns the pseudo-rapidity, i.e. -ln(tan(theta/2))

   inline Double_t Eta() const;

   void RotateX(Double_t);
   // Rotates the Hep3Vector around the x-axis.

   void RotateY(Double_t);
   // Rotates the Hep3Vector around the y-axis.

   void RotateZ(Double_t);
   // Rotates the Hep3Vector around the z-axis.

   void RotateUz(const TVector3&);
   // Rotates reference frame from Uz to newUz (unit vector) (Geant4).

   void Rotate(Double_t, const TVector3 &);
   // Rotates around the axis specified by another Hep3Vector.

   TVector3 & operator *= (const TRotation &);
   TVector3 & Transform(const TRotation &);
   // Transformation with a Rotation matrix.

   inline TVector2 XYvector() const;

   void Print(Option_t* option="") const;

private:

   Double_t fX, fY, fZ;
   // The components.

   ClassDef(TVector3,3) // A 3D physics vector

};


TVector3 operator + (const TVector3 &, const TVector3 &);
// Addition of 3-vectors.

TVector3 operator - (const TVector3 &, const TVector3 &);
// Subtraction of 3-vectors.

Double_t operator * (const TVector3 &, const TVector3 &);
// Scalar product of 3-vectors.

TVector3 operator * (const TVector3 &, Double_t a);
TVector3 operator * (Double_t a, const TVector3 &);
// Scaling of 3-vectors with a real number

TVector3 operator * (const TMatrix &, const TVector3 &);


Double_t & TVector3::operator[] (int i)       { return operator()(i); }
Double_t   TVector3::operator[] (int i) const { return operator()(i); }

inline Double_t TVector3::x()  const { return fX; }
inline Double_t TVector3::y()  const { return fY; }
inline Double_t TVector3::z()  const { return fZ; }
inline Double_t TVector3::X()  const { return fX; }
inline Double_t TVector3::Y()  const { return fY; }
inline Double_t TVector3::Z()  const { return fZ; }
inline Double_t TVector3::Px() const { return fX; }
inline Double_t TVector3::Py() const { return fY; }
inline Double_t TVector3::Pz() const { return fZ; }

inline void TVector3::SetX(Double_t xx) { fX = xx; }
inline void TVector3::SetY(Double_t yy) { fY = yy; }
inline void TVector3::SetZ(Double_t zz) { fZ = zz; }

inline void TVector3::SetXYZ(Double_t xx, Double_t yy, Double_t zz) {
   fX = xx;
   fY = yy;
   fZ = zz;
}

inline void TVector3::GetXYZ(Double_t *carray) const {
   carray[0] = fX;
   carray[1] = fY;
   carray[2] = fZ;
}

inline void TVector3::GetXYZ(Float_t *carray) const {
   carray[0] = fX;
   carray[1] = fY;
   carray[2] = fZ;
}


inline TVector3 & TVector3::operator = (const TVector3 & p) {
   fX = p.fX;
   fY = p.fY;
   fZ = p.fZ;
   return *this;
}

inline Bool_t TVector3::operator == (const TVector3& v) const {
   return (v.fX==fX && v.fY==fY && v.fZ==fZ) ? kTRUE : kFALSE;
}

inline Bool_t TVector3::operator != (const TVector3& v) const {
   return (v.fX!=fX || v.fY!=fY || v.fZ!=fZ) ? kTRUE : kFALSE;
}

inline TVector3& TVector3::operator += (const TVector3 & p) {
   fX += p.fX;
   fY += p.fY;
   fZ += p.fZ;
   return *this;
}

inline TVector3& TVector3::operator -= (const TVector3 & p) {
   fX -= p.fX;
   fY -= p.fY;
   fZ -= p.fZ;
   return *this;
}

inline TVector3 TVector3::operator - () const {
   return TVector3(-fX, -fY, -fZ);
}

inline TVector3& TVector3::operator *= (Double_t a) {
   fX *= a;
   fY *= a;
   fZ *= a;
   return *this;
}

inline Double_t TVector3::Dot(const TVector3 & p) const {
   return fX*p.fX + fY*p.fY + fZ*p.fZ;
}

inline TVector3 TVector3::Cross(const TVector3 & p) const {
   return TVector3(fY*p.fZ-p.fY*fZ, fZ*p.fX-p.fZ*fX, fX*p.fY-p.fX*fY);
}

inline Double_t TVector3::Mag2() const { return fX*fX + fY*fY + fZ*fZ; }


inline TVector3 TVector3::Orthogonal() const {
   Double_t xx = fX < 0.0 ? -fX : fX;
   Double_t yy = fY < 0.0 ? -fY : fY;
   Double_t zz = fZ < 0.0 ? -fZ : fZ;
   if (xx < yy) {
      return xx < zz ? TVector3(0,fZ,-fY) : TVector3(fY,-fX,0);
   } else {
      return yy < zz ? TVector3(-fZ,0,fX) : TVector3(fY,-fX,0);
   }
}

inline Double_t TVector3::Perp2() const { return fX*fX + fY*fY; }


inline Double_t TVector3::Pt() const { return Perp(); }

inline Double_t TVector3::Perp2(const TVector3 & p)  const {
   Double_t tot = p.Mag2();
   Double_t ss  = Dot(p);
   Double_t per = Mag2();
   if (tot > 0.0) per -= ss*ss/tot;
   if (per < 0)   per = 0;
   return per;
}

inline Double_t TVector3::Pt(const TVector3 & p) const {
   return Perp(p);
}

inline Double_t TVector3::CosTheta() const {
   Double_t ptot = Mag();
   return ptot == 0.0 ? 1.0 : fZ/ptot;
}

inline void TVector3::SetMag(Double_t ma) {
   Double_t factor = Mag();
   if (factor == 0) {
      Warning("SetMag","zero vector can't be stretched");
   } else {
      factor = ma/factor;
      SetX(fX*factor);
      SetY(fY*factor);
      SetZ(fZ*factor);
   }
}

inline void TVector3::SetPerp(Double_t r) {
   Double_t p = Perp();
   if (p != 0.0) {
      fX *= r/p;
      fY *= r/p;
   }
}

inline Double_t TVector3::DeltaPhi(const TVector3 & v) const {
   return TVector2::Phi_mpi_pi(Phi()-v.Phi());
}

inline Double_t TVector3::Eta() const {
   return PseudoRapidity();
}

inline Double_t TVector3::DrEtaPhi(const TVector3 & v) const{
   return DeltaR(v);
}


inline TVector2 TVector3::EtaPhiVector() const {
   return TVector2 (Eta(),Phi());
}

inline TVector2 TVector3::XYvector() const {
   return TVector2(fX,fY);
}

#endif