This file is indexed.

/usr/include/root/TMVA/MethodBoost.h is in libroot-tmva-dev 5.34.19+dfsg-1.2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
// @(#)root/tmva $Id$
// Author: Andreas Hoecker, Joerg Stelzer, Helge Voss, Kai Voss,Or Cohen, Jan Therhaag, Eckhard von Toerne

/**********************************************************************************
 * Project: TMVA - a Root-integrated toolkit for multivariate data analysis       *
 * Package: TMVA                                                                  *
 * Class  : MethodCompositeBase                                                   *
 * Web    : http://tmva.sourceforge.net                                           *
 *                                                                                *
 * Description:                                                                   *
 *      Virtual base class for all MVA method                                     *
 *                                                                                *
 * Authors (alphabetical):                                                        *
 *      Andreas Hoecker    <Andreas.Hocker@cern.ch>   - CERN, Switzerland         *
 *      Peter Speckmayer   <Peter.Speckmazer@cern.ch> - CERN, Switzerland         *
 *      Joerg Stelzer      <Joerg.Stelzer@cern.ch>    - CERN, Switzerland         *
 *      Helge Voss         <Helge.Voss@cern.ch>       - MPI-K Heidelberg, Germany *
 *      Jan Therhaag       <Jan.Therhaag@cern.ch>     - U of Bonn, Germany        *
 *      Eckhard v. Toerne  <evt@uni-bonn.de>          - U of Bonn, Germany        *
 *                                                                                *
 * Copyright (c) 2005-2011:                                                       *
 *      CERN, Switzerland                                                         *
 *      U. of Victoria, Canada                                                    *
 *      MPI-K Heidelberg, Germany                                                 *
 *      U. of Bonn, Germany                                                       *
 *                                                                                *
 * Redistribution and use in source and binary forms, with or without             *
 * modification, are permitted according to the terms listed in LICENSE           *
 * (http://tmva.sourceforge.net/LICENSE)                                          *
 **********************************************************************************/

#ifndef ROOT_TMVA_MethodBoost
#define ROOT_TMVA_MethodBoost

//////////////////////////////////////////////////////////////////////////
//                                                                      //
// MethodBoost                                                          //
//                                                                      //
// Class for boosting a TMVA method                                     //
//                                                                      //
//////////////////////////////////////////////////////////////////////////

#include <iosfwd>
#include <vector>

#ifndef ROOT_TMVA_MethodBase
#include "TMVA/MethodBase.h"
#endif

#ifndef ROOT_TMVA_MethodCompositeBase
#include "TMVA/MethodCompositeBase.h"
#endif

namespace TMVA {

   class Factory;  // DSMTEST
   class Reader;   // DSMTEST
   class DataSetManager;  // DSMTEST

   class MethodBoost : public MethodCompositeBase {

   public :

      // constructors
      MethodBoost( const TString& jobName,
                   const TString& methodTitle,
                   DataSetInfo& theData,
                   const TString& theOption = "",
                   TDirectory* theTargetDir = NULL );

      MethodBoost( DataSetInfo& dsi,
                   const TString& theWeightFile,
                   TDirectory* theTargetDir = NULL );

      virtual ~MethodBoost( void );

      virtual Bool_t HasAnalysisType( Types::EAnalysisType type, UInt_t numberClasses, UInt_t /*numberTargets*/ );

      // training and boosting all the classifiers
      void Train( void );

      // ranking of input variables
      const Ranking* CreateRanking();

      // saves the name and options string of the boosted classifier
      Bool_t BookMethod( Types::EMVA theMethod, TString methodTitle, TString theOption );
      void SetBoostedMethodName ( TString methodName )     { fBoostedMethodName  = methodName; }

      Int_t          GetBoostNum() { return fBoostNum; }

      void CleanBoostOptions();

      Double_t GetMvaValue( Double_t* err=0, Double_t* errUpper = 0 );

   private :
      // clean up
      void ClearAll();

      // print fit results
      void PrintResults( const TString&, std::vector<Double_t>&, const Double_t ) const;

      // initializing mostly monitoring tools of the boost process
      void Init();
      void InitHistos();
      void CheckSetup();

      void MonitorBoost( Types::EBoostStage stage, UInt_t methodIdx=0);

      // the option handling methods
      void DeclareOptions();
      void DeclareCompatibilityOptions();
      void ProcessOptions();


      MethodBase*  CurrentMethod(){return fCurrentMethod;}
      UInt_t       CurrentMethodIdx(){return fCurrentMethodIdx;}
      // training a single classifier
      void SingleTrain();

      // calculating a boosting weight from the classifier, storing it in the next one
      Double_t SingleBoost(MethodBase* method);
      Double_t AdaBoost(MethodBase* method, Bool_t useYesNoLeaf );
      Double_t Bagging();


      // calculate weight of single method
      Double_t CalcMethodWeight();

      // return ROC integral on training/testing sample
      Double_t GetBoostROCIntegral(Bool_t, Types::ETreeType, Bool_t CalcOverlapIntergral=kFALSE);

      // writing the monitoring histograms and tree to a file
      void WriteMonitoringHistosToFile( void ) const;

      // write evaluation histograms into target file
      virtual void WriteEvaluationHistosToFile(Types::ETreeType treetype);

      // performs the MethodBase testing + testing of each boosted classifier
      virtual void TestClassification();

      // finding the MVA to cut between sig and bgd according to fMVACutPerc,fMVACutType
      void FindMVACut(MethodBase* method);

      // setting all the boost weights to 1
      void ResetBoostWeights();

      // creating the vectors of histogram for monitoring MVA response of each classifier
      void CreateMVAHistorgrams();

      // calculate MVA values of current trained method on training
      // sample
      void CalcMVAValues();
      
      UInt_t                 fBoostNum;           // Number of times the classifier is boosted
      TString                fBoostType;          // string specifying the boost type      

      TString                fTransformString;    // min and max values for the classifier response      
      Bool_t                 fDetailedMonitoring; // produce detailed monitoring histograms (boost-wise)
      
      Double_t               fAdaBoostBeta;       // ADA boost parameter, default is 1      
      UInt_t                 fRandomSeed;         // seed for random number generator used for bagging
      Double_t               fBaggedSampleFraction;// rel.Size of bagged sample
      
      TString                fBoostedMethodName;    // details of the boosted classifier
      TString                fBoostedMethodTitle;   // title 
      TString                fBoostedMethodOptions; // options
      
      Bool_t                 fMonitorBoostedMethod; // monitor the MVA response of every classifier

      // MVA output from each classifier over the training hist, using orignal events weights
      std::vector< TH1* >   fTrainSigMVAHist;
      std::vector< TH1* >   fTrainBgdMVAHist;
      // MVA output from each classifier over the training hist, using boosted events weights
      std::vector< TH1* >   fBTrainSigMVAHist;
      std::vector< TH1* >   fBTrainBgdMVAHist;
      // MVA output from each classifier over the testing hist
      std::vector< TH1* >   fTestSigMVAHist;
      std::vector
< TH1* >   fTestBgdMVAHist;
      
      //monitoring tree/ntuple and it's variables
      TTree*                fMonitorTree;     // tree  to monitor values during the boosting      
      Double_t              fBoostWeight;        // the weight used to boost the next classifier      
      Double_t              fMethodError;     // estimation of the level error of the classifier 
                                                  // analysing the train dataset      
      Double_t           fROC_training;       // roc integral of last trained method (on training sample)

      // overlap integral of mva distributions for signal and
      // background (training sample)
      Double_t           fOverlap_integral;
      
      std::vector<Float_t> *fMVAvalues;       // mva values for the last trained method

      DataSetManager*    fDataSetManager;     // DSMTEST
      friend class Factory;                   // DSMTEST
      friend class Reader;                    // DSMTEST      

      TString fHistoricOption;    //historic variable, only needed for "CompatibilityOptions" 
      Bool_t fHistoricBoolOption; //historic variable, only needed for "CompatibilityOptions" 

   protected:

      // get help message text
      void GetHelpMessage() const;

      ClassDef(MethodBoost,0)
   };
}

#endif