This file is indexed.

/usr/include/root/TMVA/MethodCuts.h is in libroot-tmva-dev 5.34.19+dfsg-1.2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
// @(#)root/tmva $Id$
// Author: Andreas Hoecker, Matt Jachowski, Peter Speckmayer, Helge Voss, Kai Voss

/**********************************************************************************
 * Project: TMVA - a Root-integrated toolkit for multivariate data analysis       *
 * Package: TMVA                                                                  *
 * Class  : MethodCuts                                                            *
 * Web    : http://tmva.sourceforge.net                                           *
 *                                                                                *
 * Description:                                                                   *
 *      Multivariate optimisation of signal efficiency for given background       *
 *      efficiency, using rectangular minimum and maximum requirements on         *
 *      input variables                                                           *
 *                                                                                *
 * Authors (alphabetical):                                                        *
 *      Andreas Hoecker  <Andreas.Hocker@cern.ch> - CERN, Switzerland             *
 *      Matt Jachowski   <jachowski@stanford.edu> - Stanford University, USA      *
 *      Peter Speckmayer <speckmay@mail.cern.ch>  - CERN, Switzerland             *
 *      Helge Voss       <Helge.Voss@cern.ch>     - MPI-K Heidelberg, Germany     *
 *      Kai Voss         <Kai.Voss@cern.ch>       - U. of Victoria, Canada        *
 *                                                                                *
 * Copyright (c) 2005:                                                            *
 *      CERN, Switzerland                                                         *
 *      U. of Victoria, Canada                                                    *
 *      MPI-K Heidelberg, Germany                                                 *
 *      LAPP, Annecy, France                                                      *
 *                                                                                *
 * Redistribution and use in source and binary forms, with or without             *
 * modification, are permitted according to the terms listed in LICENSE           *
 * (http://tmva.sourceforge.net/LICENSE)                                          *
 **********************************************************************************/

#ifndef ROOT_TMVA_MethodCuts
#define ROOT_TMVA_MethodCuts

//////////////////////////////////////////////////////////////////////////
//                                                                      //
// MethodCuts                                                           //
//                                                                      //
// Multivariate optimisation of signal efficiency for given background  //
// efficiency, using rectangular minimum and maximum requirements on    //
// input variables                                                      //
//                                                                      //
//////////////////////////////////////////////////////////////////////////

#include <vector>
#include <map>

#ifndef ROOT_TMVA_MethodBase
#include "TMVA/MethodBase.h"
#endif
#ifndef ROOT_TMVA_BinarySearchTree
#include "TMVA/BinarySearchTree.h"
#endif
#ifndef ROOT_TMVA_PDF
#include "TMVA/PDF.h"
#endif
#ifndef ROOT_TMVA_TMatrixDfwd
#ifndef ROOT_TMatrixDfwd
#include "TMatrixDfwd.h"
#endif
#endif
#ifndef ROOT_TMVA_IFitterTarget
#ifndef ROOT_IFitterTarget
#include "IFitterTarget.h"
#endif
#endif

class TRandom;

namespace TMVA {

   class Interval;

   class MethodCuts : public MethodBase, public IFitterTarget {

   public:

      MethodCuts( const TString& jobName,
                  const TString& methodTitle, 
                  DataSetInfo& theData,
                  const TString& theOption = "MC:150:10000:",
                  TDirectory* theTargetFile = 0 );

      MethodCuts( DataSetInfo& theData,
                  const TString& theWeightFile,
                  TDirectory* theTargetDir = NULL );

      // this is a workaround which is necessary since CINT is not capable of handling dynamic casts
      static MethodCuts* DynamicCast( IMethod* method ) { return dynamic_cast<MethodCuts*>(method); }

      virtual ~MethodCuts( void );

      virtual Bool_t HasAnalysisType( Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets );

      // training method
      void Train( void );

      using MethodBase::ReadWeightsFromStream;

      void AddWeightsXMLTo      ( void* parent ) const;

      void ReadWeightsFromStream( std::istream & i );
      void ReadWeightsFromXML   ( void* wghtnode );

      // calculate the MVA value (for CUTs this is just a dummy)
      Double_t GetMvaValue( Double_t* err = 0, Double_t* errUpper = 0 );

      // write method specific histos to target file
      void WriteMonitoringHistosToFile( void ) const;

      // test the method
      void TestClassification();
     
      // also overwrite --> not computed for cuts
      Double_t GetSeparation  ( TH1*, TH1* ) const { return -1; }
      Double_t GetSeparation  ( PDF* = 0, PDF* = 0 ) const { return -1; }
      Double_t GetSignificance( void )       const { return -1; }
      Double_t GetmuTransform ( TTree *)           { return -1; }
      Double_t GetEfficiency  ( const TString&, Types::ETreeType, Double_t& );
      Double_t GetTrainingEfficiency(const TString& );

      // rarity distributions (signal or background (default) is uniform in [0,1])
      Double_t GetRarity( Double_t, Types::ESBType ) const { return 0; }

      // accessors for Minuit
      Double_t ComputeEstimator( std::vector<Double_t> & );
      
      Double_t EstimatorFunction( std::vector<Double_t> & );
      Double_t EstimatorFunction( Int_t ievt1, Int_t ievt2 );

      void     SetTestSignalEfficiency( Double_t effS ) { fTestSignalEff = effS; }

      // retrieve cut values for given signal efficiency
      void     PrintCuts( Double_t effS ) const;
      Double_t GetCuts  ( Double_t effS, std::vector<Double_t>& cutMin, std::vector<Double_t>& cutMax ) const;
      Double_t GetCuts  ( Double_t effS, Double_t* cutMin, Double_t* cutMax ) const;

      // ranking of input variables (not available for cuts)
      const Ranking* CreateRanking() { return 0; }

      void DeclareOptions();
      void ProcessOptions();

      // maximum |cut| value
      static const Double_t fgMaxAbsCutVal;

      // no check of options at this place
      void CheckSetup() {}

   protected:

      // make ROOT-independent C++ class for classifier response (classifier-specific implementation)
      void MakeClassSpecific( std::ostream&, const TString& ) const;

      // get help message text
      void GetHelpMessage() const;

   private:

      // optimisation method
      enum EFitMethodType { kUseMonteCarlo = 0,
                            kUseGeneticAlgorithm,
                            kUseSimulatedAnnealing,
                            kUseMinuit,
                            kUseEventScan,
                            kUseMonteCarloEvents };

      // efficiency calculation method
      // - kUseEventSelection: computes efficiencies from given data sample
      // - kUsePDFs          : creates smoothed PDFs from data samples, and 
      //                       uses this to compute efficiencies
      enum EEffMethod     { kUseEventSelection = 0,
                            kUsePDFs };

      // improve the Monte Carlo by providing some additional information
      enum EFitParameters { kNotEnforced = 0,
                            kForceMin,
                            kForceMax,
                            kForceSmart };

      // general
      TString                 fFitMethodS;         // chosen fit method (string)
      EFitMethodType          fFitMethod;          // chosen fit method
      TString                 fEffMethodS;         // chosen efficiency calculation method (string)
      EEffMethod              fEffMethod;          // chosen efficiency calculation method
      std::vector<EFitParameters>* fFitParams;     // vector for series of fit methods
      Double_t                fTestSignalEff;      // used to test optimized signal efficiency
      Double_t                fEffSMin;            // used to test optimized signal efficiency
      Double_t                fEffSMax;            // used to test optimized signal efficiency
      Double_t*               fCutRangeMin;        // minimum of allowed cut range
      Double_t*               fCutRangeMax;        // maximum of allowed cut range
      std::vector<Interval*>  fCutRange;           // allowed ranges for cut optimisation

      // for the use of the binary tree method
      BinarySearchTree*       fBinaryTreeS;
      BinarySearchTree*       fBinaryTreeB;

      // MC method
      Double_t**              fCutMin;             // minimum requirement
      Double_t**              fCutMax;             // maximum requirement
      Double_t*               fTmpCutMin;          // temporary minimum requirement
      Double_t*               fTmpCutMax;          // temporary maximum requirement
      TString*                fAllVarsI;           // what to do with variables

      // relevant for all methods
      Int_t                   fNpar;               // number of parameters in fit (default: 2*Nvar)
      Double_t                fEffRef;             // reference efficiency
      std::vector<Int_t>*     fRangeSign;          // used to match cuts to fit parameters (and vice versa)
      TRandom*                fRandom;             // random generator for MC optimisation method

      // basic statistics
      std::vector<Double_t>*  fMeanS;              // means of variables (signal)
      std::vector<Double_t>*  fMeanB;              // means of variables (background)
      std::vector<Double_t>*  fRmsS;               // RMSs of variables (signal)
      std::vector<Double_t>*  fRmsB;               // RMSs of variables (background)

      TH1*                    fEffBvsSLocal;       // intermediate eff. background versus eff signal histo

      // PDF section
      std::vector<TH1*>*      fVarHistS;           // reference histograms (signal)
      std::vector<TH1*>*      fVarHistB;           // reference histograms (background)
      std::vector<TH1*>*      fVarHistS_smooth;    // smoothed reference histograms (signal)        
      std::vector<TH1*>*      fVarHistB_smooth;    // smoothed reference histograms (background)
      std::vector<PDF*>*      fVarPdfS;            // reference PDFs (signal)
      std::vector<PDF*>*      fVarPdfB;            // reference PDFs (background)

      // negative efficiencies
      Bool_t                  fNegEffWarning;      // flag risen in case of negative efficiency warning


      // the definition of fit parameters can be different from the actual 
      // cut requirements; these functions provide the matching
      void     MatchParsToCuts( const std::vector<Double_t>&, Double_t*, Double_t* );
      void     MatchParsToCuts( Double_t*, Double_t*, Double_t* );

      void     MatchCutsToPars( std::vector<Double_t>&, Double_t*, Double_t* );
      void     MatchCutsToPars( std::vector<Double_t>&, Double_t**, Double_t**, Int_t ibin );

      // creates PDFs in case these are used to compute efficiencies 
      // (corresponds to: EffMethod == kUsePDFs)
      void     CreateVariablePDFs( void );

      // returns signal and background efficiencies for given cuts - using event counting
      void     GetEffsfromSelection( Double_t* cutMin, Double_t* cutMax,
                                     Double_t& effS, Double_t& effB );
      // returns signal and background efficiencies for given cuts - using PDFs
      void     GetEffsfromPDFs( Double_t* cutMin, Double_t* cutMax,
                                Double_t& effS, Double_t& effB );

      // default initialisation method called by all constructors
      void     Init( void );

      ClassDef(MethodCuts,0)  // Multivariate optimisation of signal efficiency
   };

} // namespace TMVA

#endif