This file is indexed.

/usr/include/root/TMVA/MethodLD.h is in libroot-tmva-dev 5.34.19+dfsg-1.2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
// Author: Krzysztof Danielowski, Kamil Kraszewski, Maciej Kruk, Jan Therhaag 

/**********************************************************************************
 * Project: TMVA - a Root-integrated toolkit for multivariate data analysis       *
 * Package: TMVA                                                                  *
 * Class  : MethodLD                                                              *
 * Web    : http://tmva.sourceforge.net                                           *
 *                                                                                *
 * Description:                                                                   *
 *      Linear Discriminant (Simple Linear Regression)                            *
 *                                                                                *
 * Authors (alphabetical):                                                        *
 *      Krzysztof Danielowski <danielow@cern.ch> - IFJ PAN & AGH, Poland          *
 *      Kamil Kraszewski      <kalq@cern.ch>     - IFJ PAN & UJ, Poland           *
 *      Maciej Kruk           <mkruk@cern.ch>    - IFJ PAN & AGH, Poland          *
 *      Peter Speckmayer      <peter.speckmayer@cern.ch>  - CERN, Switzerland     *
 *      Jan Therhaag          <therhaag@physik.uni-bonn.de> - Uni Bonn, Germany   *
 *                                                                                *
 * Copyright (c) 2008-2011:                                                       *
 *      CERN, Switzerland                                                         * 
 *      PAN, Poland                                                               * 
 *      U. of Bonn, Germany                                                       *
 *                                                                                *
 * Redistribution and use in source and binary forms, with or without             *
 * modification, are permitted according to the terms listed in LICENSE           *
 * (http://tmva.sourceforge.net/LICENSE)                                          *
 *                                                                                *
 **********************************************************************************/

#ifndef ROOT_TMVA_MethodLD
#define ROOT_TMVA_MethodLD

//////////////////////////////////////////////////////////////////////////
//                                                                      //
// MethodLD                                                             //
//                                                                      //
// Linear Discriminant                                                  //
// Can compute multidimensional output for regression                   //
// (although it computes every dimension separately)                    //
//                                                                      //
//////////////////////////////////////////////////////////////////////////

#include <vector>

#ifndef ROOT_TMVA_MethodBase
#include "TMVA/MethodBase.h"
#endif
#ifndef ROOT_TMatrixDfwd
#include "TMatrixDfwd.h"
#endif

namespace TMVA {

   class MethodLD : public MethodBase {

   public:
   
      // constructor
      MethodLD( const TString& jobName, 
                const TString& methodTitle, 
                DataSetInfo& dsi,
                const TString& theOption = "LD",
                TDirectory* theTargetDir = 0 );
      
      // constructor
      MethodLD( DataSetInfo& dsi, 
                const TString& theWeightFile, 
                TDirectory* theTargetDir = 0 );

      // destructor
      virtual ~MethodLD( void );

      Bool_t HasAnalysisType( Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets );
    
      // training method
      void Train( void );

      // calculate the MVA value
      Double_t GetMvaValue( Double_t* err = 0, Double_t* errUpper = 0 );

      // calculate the Regression value
      virtual const std::vector<Float_t>& GetRegressionValues();

      using MethodBase::ReadWeightsFromStream;   

      void AddWeightsXMLTo      ( void* parent ) const;

      void ReadWeightsFromStream( std::istream & i );
      void ReadWeightsFromXML   ( void* wghtnode );

      const Ranking* CreateRanking();
      void DeclareOptions();
      void ProcessOptions();

   protected:

      void MakeClassSpecific( std::ostream&, const TString& ) const;
      void GetHelpMessage() const;

   private:

      Int_t fNRegOut; // size of the output
 
      TMatrixD *fSumMatx;              // Sum of coordinates product matrix 
      TMatrixD *fSumValMatx;           // Sum of values multiplied by coordinates
      TMatrixD *fCoeffMatx;            // Matrix of coefficients
      std::vector< std::vector<Double_t>* > *fLDCoeff; // LD coefficients

      // default initialisation called by all constructors
      void Init( void );

      // Initialization and allocation of matrices
      void InitMatrices( void );

      // Compute fSumMatx
      void GetSum( void );

      // Compute fSumValMatx
      void GetSumVal( void );

      // get LD coefficients
      void GetLDCoeff( void );
      
      // nice output
      void PrintCoefficients( void );

      ClassDef(MethodLD,0) //Linear discriminant analysis
         };
} // namespace TMVA

#endif // MethodLD_H