This file is indexed.

/usr/include/root/TMVA/Reader.h is in libroot-tmva-dev 5.34.19+dfsg-1.2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
// @(#)root/tmva $Id$
// Author: Andreas Hoecker, Peter Speckmayer, Joerg Stelzer, Helge Voss, Kai Voss, Eckhard von Toerne, Jan Therhaag

/**********************************************************************************
 * Project: TMVA - a Root-integrated toolkit for multivariate data analysis       *
 * Package: TMVA                                                                  *
 * Class  : Reader                                                                *
 * Web    : http://tmva.sourceforge.net                                           *
 *                                                                                *
 * Description:                                                                   *
 *      Reader class to be used in the user application to interpret the trained  *
 *      MVAs in an analysis context                                               *
 *                                                                                *
 * Authors (alphabetical order):                                                  *
 *      Andreas Hoecker <Andreas.Hocker@cern.ch> - CERN, Switzerland              *
 *      Peter Speckmayer <peter.speckmayer@cern.ch> - CERN, Switzerland           *
 *      Joerg Stelzer <Joerg.Stelzer@cern.ch>    - CERN, Switzerland              *
 *      Jan Therhaag       <Jan.Therhaag@cern.ch>     - U of Bonn, Germany        *
 *      Eckhard v. Toerne  <evt@uni-bonn.de>          - U of Bonn, Germany        *
 *      Helge Voss      <Helge.Voss@cern.ch>     - MPI-K Heidelberg, Germany      *
 *      Kai Voss        <Kai.Voss@cern.ch>       - U. of Victoria, Canada         *
 *                                                                                *
 * Copyright (c) 2005-2011:                                                       *
 *      CERN, Switzerland                                                         *
 *      U. of Victoria, Canada                                                    *
 *      MPI-K Heidelberg, Germany                                                 *
 *      U. of Bonn, Germany                                                       *
 *                                                                                *
 * Redistribution and use in source and binary forms, with or without             *
 * modification, are permitted according to the terms listed in LICENSE           *
 * (http://ttmva.sourceforge.net/LICENSE)                                         *
 **********************************************************************************/

#ifndef ROOT_TMVA_Reader
#define ROOT_TMVA_Reader

//////////////////////////////////////////////////////////////////////////
//                                                                      //
// Reader                                                               //
//                                                                      //
// Reader class to be used in the user application to interpret the     //
// trained MVAs in an analysis context                                  //
//                                                                      //
//////////////////////////////////////////////////////////////////////////

#ifndef ROOT_TMVA_Configurable
#include "TMVA/Configurable.h"
#endif
#ifndef ROOT_TMVA_Types
#include "TMVA/Types.h"
#endif
#ifndef ROOT_TMVA_DataSetInfo
#include "TMVA/DataSetInfo.h"
#endif
#ifndef ROOT_TMVA_DataInputHandler
#include "TMVA/DataInputHandler.h"
#endif
#ifndef ROOT_TMVA_DataSetManager
#include "TMVA/DataSetManager.h"
#endif

#include <vector>
#include <map>
#include <stdexcept>

namespace TMVA {

   class IMethod;
   class MethodBase;
   class DataSetInfo;
   class MethodCuts;

   class Reader : public Configurable {

   public:

      // without prior specification of variables
      Reader( const TString& theOption="", Bool_t verbose = 0 );

      // STL types
      Reader( std::vector<std::string>& varNames, const TString& theOption = "", Bool_t verbose = 0 );
      Reader( const std::string& varNames, const TString& theOption, Bool_t verbose = 0 );  // format: "var1:var2:..."

      // Root types
      Reader( std::vector<TString>& varNames, const TString& theOption = "", Bool_t verbose = 0 );
      Reader( const TString& varNames, const TString& theOption, Bool_t verbose = 0 );  // format: "var1:var2:..."

      virtual ~Reader( void );

      // book MVA method via weight file
      IMethod* BookMVA( const TString& methodTag, const TString& weightfile );
      IMethod* BookMVA( TMVA::Types::EMVA methodType, const char* xmlstr );
      IMethod* FindMVA( const TString& methodTag );
      // special function for Cuts to avoid dynamic_casts in ROOT macros,
      // which are not properly handled by CINT
      MethodCuts* FindCutsMVA( const TString& methodTag );


      // returns the MVA response for given event
      Double_t EvaluateMVA( const std::vector<Float_t> &, const TString& methodTag, Double_t aux = 0 );
      Double_t EvaluateMVA( const std::vector<Double_t>&, const TString& methodTag, Double_t aux = 0 );
      Double_t EvaluateMVA( MethodBase* method,           Double_t aux = 0 );
      Double_t EvaluateMVA( const TString& methodTag,     Double_t aux = 0 );

      // returns error on MVA response for given event
      // NOTE: must be called AFTER "EvaluateMVA(...)" call !
      Double_t GetMVAError() const { return fMvaEventError; }
      Double_t GetMVAErrorLower() const { return fMvaEventError; }
      Double_t GetMVAErrorUpper() const { return fMvaEventErrorUpper; }

      // regression response
      const std::vector< Float_t >& EvaluateRegression( const TString& methodTag, Double_t aux = 0 );
      const std::vector< Float_t >& EvaluateRegression( MethodBase* method, Double_t aux = 0 );
      Float_t  EvaluateRegression( UInt_t tgtNumber, const TString& methodTag, Double_t aux = 0 );

      // multiclass response
      const std::vector< Float_t >& EvaluateMulticlass( const TString& methodTag, Double_t aux = 0 );
      const std::vector< Float_t >& EvaluateMulticlass( MethodBase* method, Double_t aux = 0 );
      Float_t  EvaluateMulticlass( UInt_t clsNumber, const TString& methodTag, Double_t aux = 0 );

      // probability and rarity accessors (see Users Guide for definition of Rarity)
      Double_t GetProba ( const TString& methodTag, Double_t ap_sig=0.5, Double_t mvaVal=-9999999 );
      Double_t GetRarity( const TString& methodTag, Double_t mvaVal=-9999999 );

      // accessors
      virtual const char* GetName() const { return "Reader"; }
      Bool_t   Verbose( void ) const  { return fVerbose; }
      void     SetVerbose( Bool_t v ) { fVerbose = v; }

      const DataSetInfo& DataInfo() const { return fDataSetInfo; }
      DataSetInfo&       DataInfo()       { return fDataSetInfo; }

      void     AddVariable( const TString& expression, Float_t* );
      void     AddVariable( const TString& expression, Int_t* );

      void     AddSpectator( const TString& expression, Float_t* );
      void     AddSpectator( const TString& expression, Int_t* );

   private:

      DataSetManager* fDataSetManager; // DSMTEST


      TString GetMethodTypeFromFile( const TString& filename );

      // this booking method is internal
      IMethod* BookMVA( Types::EMVA method,  const TString& weightfile );

      DataSetInfo fDataSetInfo; // the data set

      DataInputHandler fDataInputHandler;

      // Init Reader class
      void Init( void );

      // Decode Constructor string (or TString) and fill variable name std::vector
      void DecodeVarNames( const std::string& varNames );
      void DecodeVarNames( const TString& varNames );

      void DeclareOptions();

      Bool_t    fVerbose;            // verbosity
      Bool_t    fSilent;             // silent mode
      Bool_t    fColor;              // color mode
      Bool_t    fCalculateError;     // error calculation mode

      Double_t  fMvaEventError;      // per-event error returned by MVA
      Double_t  fMvaEventErrorUpper; // per-event error returned by MVA

      std::map<TString, IMethod*> fMethodMap; // map of methods

      std::vector<Float_t> fTmpEvalVec; // temporary evaluation vector (if user input is v<double>)

      mutable MsgLogger* fLogger;   // message logger
      MsgLogger& Log() const { return *fLogger; }

      ClassDef(Reader,0) // Interpret the trained MVAs in an analysis context
   };

}

#endif