This file is indexed.

/usr/include/sc/util/ref/ref.h is in libsc-dev 2.3.1-16.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
//
// ref.h --- definitions of the reference counting classes
//
// Copyright (C) 1996 Limit Point Systems, Inc.
//
// Author: Curtis Janssen <cljanss@limitpt.com>
// Maintainer: LPS
//
// This file is part of the SC Toolkit.
//
// The SC Toolkit is free software; you can redistribute it and/or modify
// it under the terms of the GNU Library General Public License as published by
// the Free Software Foundation; either version 2, or (at your option)
// any later version.
//
// The SC Toolkit is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU Library General Public License for more details.
//
// You should have received a copy of the GNU Library General Public License
// along with the SC Toolkit; see the file COPYING.LIB.  If not, write to
// the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
//
// The U.S. Government is granted a limited license as per AL 91-7.
//

//   This is the main include file for the reference counting classes.
// This includes two other files: reftmpl.h and refmacr.h.  The
// former is a template declaration for the reference counted classes
// and the latter is generated from the former by a perl script and
// provides CPP macros that declare reference counting classes.
//
//   The behaviour of the package can be modified with the following five
// macros, each of which should be undefined, 0, or 1:
//
// REF_CHECK_STACK:  If this is 1 referenced objects are checked to see if they
// reside on the stack, in which case storage for the object is not managed,
// if management is enabled.  This feature can be confused by multiple threads
// and memory checking libraries.
//
// REF_MANAGE:  If this is 1 the manage and unmanage members are enabled.
//
// REF_CHECK_MAX_NREF:  If this is 1 the reference count is checked before
// it is incremented to make sure it isn't too big.
//
// REF_CHECK_MIN_NREF:  If this is 1 the reference count is checked before
// it is decremented to make sure it isn't already zero.
//
// REF_USE_LOCKS:  If this is 1 then critical regions are locked before they
// are entered.  This prevents erroneous behavior when multiple threads
// share reference counted objects.  This will slow down certain operations,
// so it should be set to 0 if your application does not need to be thread
// safe.
//
// If a macro is undefined, then the behaviour is architecture
// dependent--usually, the macro will be set to 1 in this case.
// For maximum efficiency and for normal operation after the program is
// debugged, compile with all of the above macros defined to zero.
// This can also be done with -DREF_OPTIMIZE.
//
//   An include file can be used to set these options as well.  This has
// the advantage that dependency checking will force an automatic
// recompile of all affected files if the options change.  The file
// <scconfig.h> will be include if -DHAVE_CONFIG_H is specified.
//
//   Note that all source code that uses references must be compiled with
// the same value REF_MANAGE.  Changing this can change the storage layout
// and the interpretation of the reference count data.


#ifdef __GNUC__
#pragma interface
#endif

#ifndef _util_ref_ref_h
#define _util_ref_ref_h

#include <iostream>
#include <stdlib.h>
#include <limits.h>

#include <util/ref/identity.h>

#ifdef HAVE_CONFIG_H
#include <scconfig.h>
#endif

#ifdef REF_OPTIMIZE
#ifndef REF_CHECK_STACK
# define REF_CHECK_STACK   0
#endif
#ifndef REF_MANAGE
# define REF_MANAGE        0
#endif
#ifndef REF_CHECK_MAX_NREF
# define REF_CHECK_MAX_NREF 0
#endif
#ifndef REF_CHECK_MIN_NREF
# define REF_CHECK_MIN_NREF 0
#endif
#endif

#ifdef SUNMOS
#ifndef REF_CHECK_STACK
#define REF_CHECK_STACK 0
#endif
#else
#ifndef REF_CHECK_STACK
#define REF_CHECK_STACK 0
#endif
#endif

#ifndef REF_MANAGE
#define REF_MANAGE 1
#endif

#ifndef REF_CHECK_MAX_NREF
#define REF_CHECK_MAX_NREF 1
#endif

#ifndef REF_CHECK_MIN_NREF
#define REF_CHECK_MIN_NREF 1
#endif

#ifndef REF_USE_LOCKS
#  if HAVE_STHREAD || HAVE_CREATETHREAD || HAVE_PTHREAD
#    define REF_USE_LOCKS 1
#  endif
#endif

#ifndef REF_ALWAYS_USE_LOCKS
#  define REF_ALWAYS_USE_LOCKS 1
#endif

#if REF_CHECK_STACK
#include <unistd.h>
#ifndef HAVE_SBRK_DEC
extern "C" void * sbrk(ssize_t);
#endif
#define DO_REF_CHECK_STACK(p) (((void*) (p) > sbrk(0)) && (p)->managed())
#else // REF_CHECK_STACK
#define DO_REF_CHECK_STACK(p) (0)
#endif // REF_CHECK_STACK

#if REF_MANAGE
#define DO_REF_UNMANAGE(p) ((p)->unmanage())
#else // REF_MANAGE
#define DO_REF_UNMANAGE(p)
#endif // REF_MANAGE

#if REF_USE_LOCKS
#define __REF_LOCK__(p) p->lock_ptr()
#define __REF_UNLOCK__(p) p->unlock_ptr()
#if REF_ALWAYS_USE_LOCKS
#define __REF_INITLOCK__() use_locks(true)
#else
#define __REF_INITLOCK__() ref_lock_ = 0xff
#endif
#else
#define __REF_LOCK__(p)
#define __REF_UNLOCK__(p)
#define __REF_INITLOCK__()
#endif

namespace sc {

typedef unsigned long refcount_t;

/** The base class for all reference counted objects.  If multiple
    inheritance is used, RefCount must be virtually inherited from,
    otherwise references to invalid memory will likely result.

    Reference counting information is usually maintained by smart
    pointer classes Ref, however this mechanism can be
    supplemented or replaced by directly using the public
    interface to RefCount.

    The unmanage() member is only needed for special cases where memory
    management must be turned off.  For example, if a reference counted
    object is created on the stack, memory management mechanisms based on
    reference counting must be prohibited from deleting it.  The unmanage()
    member accomplishes this, but a better solution would be to allocate
    the object on the heap with new and let a smart pointer manage the
    memory for the object.

    When using a debugger to look at reference counted objects the count is
    maintained in the _reference_count_ member.  However, this member is
    encoded so that memory overwrites can be sometimes detected.  Thus,
    interpretation of _reference_count_ is not always straightforward.

*/

class RefCount: public Identity {
  private:
#if REF_MANAGE
#  define REF_MAX_NREF (UINT_MAX - 1)
#  define REF_MANAGED_CODE UINT_MAX
#else
#  define REF_MAX_NREF UINT_MAX
#endif
    unsigned int _reference_count_;
#if REF_USE_LOCKS
    unsigned char ref_lock_;
#endif

    void error(const char*) const;
    void too_many_refs() const;
    void not_enough_refs() const;
  protected:
    RefCount(): _reference_count_(0) {
        __REF_INITLOCK__();
        //std::cout << "ref_lock_ = " << (int) ref_lock_ << std::endl;
      }
    RefCount(const RefCount&): _reference_count_(0) {
        __REF_INITLOCK__();
        //std::cout << "ref_lock_ = " << (int) ref_lock_ << std::endl;
      }

    // Assigment should not overwrite the reference count.
    RefCount& operator=(const RefCount&) { return *this; }
  public:
    virtual ~RefCount();

    /// Lock this object.
    int lock_ptr() const;
    /// Unlock this object.
    int unlock_ptr() const;

    /// start and stop using locks on this object
    void use_locks(bool inVal);

    /// Return the reference count.
    refcount_t nreference() const {
#       if REF_MANAGE
        if (!managed()) return 1;
#       endif
        return _reference_count_;
      }

    /// Increment the reference count and return the new count.
    refcount_t reference() {
#       if REF_MANAGE
        if (!managed()) return 1;
#       endif
        __REF_LOCK__(this);
#       if REF_CHECK_MAX_NREF
        if (_reference_count_ >= REF_MAX_NREF) too_many_refs();
#       endif
        _reference_count_++;
        refcount_t r = _reference_count_;
        __REF_UNLOCK__(this);
        return r;
      }

    /// Decrement the reference count and return the new count.
    refcount_t dereference() {
#       if REF_MANAGE
        if (!managed()) return 1;
#       endif
        __REF_LOCK__(this);
#       if REF_CHECK_MIN_NREF
        if (_reference_count_ == 0) not_enough_refs();
#       endif
        _reference_count_--;
        refcount_t r = _reference_count_;
        __REF_UNLOCK__(this);
        return r;
      }

#if REF_MANAGE
    int managed() const {
        return _reference_count_ != REF_MANAGED_CODE;
      }
    /** Turn off the reference counting mechanism for this object.
        The value returned by nreference() will always be
        1 after this is called.  The ability to unmanage()
        objects must be turned on at compile time by defining
        REF_MANAGE.  There is a slight performance penalty. */
    void unmanage() {
        _reference_count_ = REF_MANAGED_CODE;
      }
#else // REF_MANAGE
    /// Return 1 if the object is managed.  Otherwise return 0.
    int managed() const { return 1; }
#endif // REF_MANAGE
};

/** Provides a few utility routines common to all
    Ref template instantiations.
*/
class RefBase {
  protected:
    /// Print a warning message.
    void warn ( const char * msg) const;
    /// Called when stack data is referenced.
    void warn_ref_to_stack() const;
    /// Called when the deletion of stack data is skipped.
    void warn_skip_stack_delete() const;
    /// Called when the reference count is corrupted.
    void warn_bad_ref_count() const;
    /// Print information about the reference.
    void ref_info(RefCount*p,std::ostream& os) const;
    void ref_info(std::ostream& os) const;
    void check_pointer() const;
    void reference(RefCount *);
    int dereference(RefCount *);
  public:
    RefBase() {};
    virtual ~RefBase();
    /// Returns the DescribedClass pointer for the contained object.
    virtual RefCount* parentpointer() const = 0;
    /** Requires that a nonnull reference is held.  If not,
        the program will abort. */
    void require_nonnull() const;
};

/** A template class that maintains references counts.

    Several of these operations can cause a reference to an object to be
    replaced by a reference to a different object.  If a reference to a
    nonnull object is eliminated, the object's reference count is
    decremented and the object is deleted if the reference count becomes
    zero.

    There also may be a to convert to T*, where T is the type of the object
    which Ref references.  Some compilers have bugs that prevent the use of
    operator T*().  The pointer() member should be used instead.
 
*/
template <class T>
class  Ref  : public RefBase {
  private:
    T* p;
  public:
    /// Create a reference to a null object.
    Ref(): p(0) {}
    /// Create a reference to the object a.
    Ref(T*a) : p(0)
    {
      if (a) {
          p = a;
          reference(p);
        }
    }
    /// Create a reference to the object referred to by a.
    Ref(const Ref<T> &a) : p(0)
    {
      if (a.pointer()) {
          p = a.pointer();
          reference(p);
        }
    }
    /// Create a reference to the object referred to by a.
    template <class A> Ref(const Ref<A> &a): p(0)
    {
      if (a.pointer()) {
          p = a.pointer();
          reference(p);
        }
    }
//      /** Create a reference to the object a.  Do a
//          dynamic_cast to convert a to the appropiate type. */
//      Ref(const RefBase&a) {
//          p = dynamic_cast<T*>(a.parentpointer());
//          reference(p);
//        }
//      /** Create a reference to the object a.  Do a
//          dynamic_cast to convert a to the appropiate type. */
//      Ref(RefCount*a): p(0) {
//        operator<<(a);
//        }
    /** Delete this reference to the object.  Decrement the object's reference
        count and delete the object if the count is zero. */
    ~Ref()
    {
      clear();
    }
    /** Returns the reference counted object.  The behaviour is undefined if
        the object is null. */
    T* operator->() const { return p; }
    /// Returns a pointer the reference counted object.
    T* pointer() const { return p; }
    /// Implements the parentpointer pure virtual in the base class.
    RefCount *parentpointer() const { return p; }

    operator T*() const { return p; }
    /** Returns a C++ reference to the reference counted object.
        The behaviour is undefined if the object is null. */
    T& operator *() const { return *p; };
    /** Return 1 if this is a reference to a null object.  Otherwise
        return 0. */
    int null() const { return p == 0; }
    /// Return !null().
    int nonnull() const { return p != 0; }
    /** A variety of ordering and equivalence operators are provided using
        the Identity class. */
    template <class A> int operator==(const Ref<A>&a) const
        { return eq(p,a.pointer()); }
    template <class A> int operator>=(const Ref<A>&a) const
        { return ge(p,a.pointer()); }
    template <class A> int operator<=(const Ref<A>&a) const
        { return le(p,a.pointer()); }
    template <class A> int operator>(const Ref<A>&a) const
        { return gt(p,a.pointer()); }
    template <class A> int operator<(const Ref<A>&a) const
        { return lt(p,a.pointer()); }
    template <class A> int operator!=(const Ref<A>&a) const
        { return ne(p,a.pointer()); }
    /** Compare two objects returning -1, 0, or 1. Similar
        to the C library routine strcmp. */
    int compare(const Ref<T> &a) const {
      return eq(p,a.p)?0:((lt(p,a.p)?-1:1));
    }
    /// Refer to the null object.
    void clear()
    {
      if (p) {
          int ref = dereference(p);
          if (ref == 0)
              delete p;
          p = 0;
        }
    }
    /// Assignment to c.
    Ref<T>& operator=(const Ref<T> & c)
    {
      T *cp = c.pointer();
      if (cp) {
          cp->reference();
          clear();
          p=cp;
        }
      else {
          clear();
        }
      return *this;
    }
    /// Assignment to c.
    template <class A> Ref<T>& operator=(const Ref<A> & c)
    {
      A *cp = c.pointer();
      if (cp) {
          cp->reference();
          clear();
          p=cp;
        }
      else {
          clear();
        }
      return *this;
    }
    /// Assignment to the object that a references using dynamic_cast.
    Ref<T>& operator<<(const RefBase&a) {
        T* cr = dynamic_cast<T*>(a.parentpointer());
        if (cr) {
            reference(cr);
            clear();
          }
        p = cr;
        return *this;
      }
    /** Assigns to the given base class pointer using dynamic_cast.  If
        the dynamic_cast fails and the argument is nonnull and has a
        reference count of zero, then it is deleted. */
    Ref<T>& operator<<(RefCount *a) {
        T* cr = dynamic_cast<T*>(a);
        if (cr) assign_pointer(cr);
        else if (a && a->nreference() <= 0) delete a;
        return *this;
      }
    /// Assignment to cr.
    Ref<T>& operator=(T* cr)
    {
      assign_pointer(cr);
      return *this;
    }
    /// Assignment to cr.
    void assign_pointer(T* cr)
    {
      if (cr) {
          if (DO_REF_CHECK_STACK(cr)) {
              DO_REF_UNMANAGE(cr);
              warn_ref_to_stack();
            }
          cr->reference();
        }
      clear();
      p = cr;
    }
    /// Check the validity of the pointer.
    void check_pointer() const
    {
      if (p && p->nreference() <= 0) {
          warn_bad_ref_count();
        }
    }
    /// Print information about the reference to os.
    void ref_info(std::ostream& os) const
    {
      RefBase::ref_info(p,os);
    }
    /// Print a warning concerning the reference.
    void warn(const char*s) const { RefBase::warn(s); }
};

}

#endif

// ///////////////////////////////////////////////////////////////////////////

// Local Variables:
// mode: c++
// c-file-style: "CLJ"
// End: