/usr/include/sfst-1/sfst/fst.h is in libsfst1-1.4-dev 1.4.6h-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 | /*******************************************************************/
/* */
/* FILE fst.h */
/* MODULE fst */
/* PROGRAM SFST */
/* AUTHOR Helmut Schmid, IMS, University of Stuttgart */
/* */
/* PURPOSE finite state tools */
/* */
/*******************************************************************/
#ifndef _FST_H_
#define _FST_H_
#include "alphabet.h"
typedef enum { Joint, UpperOnly, LowerOnly, Both } OutputType;
/*******************************************************************/
/* include commands */
/*******************************************************************/
#include <string>
#include <vector>
#include <map>
#include <set>
using std::map;
using std::set;
using std::vector;
using std::istream;
using std::ostream;
#include "mem.h"
namespace SFST {
// data type for table indices
typedef unsigned Index;
static const Index undef = (Index)(-1);
// data type of the generation counter for transducer traversal
typedef unsigned short VType;
extern int Quiet;
class Node;
class Arc;
class Arcs;
class Transducer;
class Node2Int;
class Transition;
struct hashf {
size_t operator()(const Node *n) const { return (size_t) n; }
};
typedef hash_set<const Node*, hashf> NodeHashSet;
/***************** class Arc *************************************/
class Arc {
private:
Label l;
Node *target;
Arc *next;
public:
void init( Label ll, Node *node ) { l=ll; target=node; };
Label label( void ) const { return l; };
Node *target_node( void ) { return target; };
const Node *target_node( void ) const { return target; };
friend class Arcs;
friend class ArcsIter;
};
/***************** class Arcs ************************************/
class Arcs {
private:
Arc *first_arcp;
Arc *first_epsilon_arcp;
public:
void init( void ) { first_arcp = first_epsilon_arcp = NULL; };
Arcs( void ) { init(); };
Node *target_node( Label l );
const Node *target_node( Label l ) const;
void add_arc( Label, Node*, Transducer* );
int remove_arc( Arc* );
bool is_empty( void ) const {
return !(first_arcp || first_epsilon_arcp);
};
bool epsilon_transition_exists( void ) const {
return first_epsilon_arcp != NULL;
};
bool non_epsilon_transition_exists( void ) const {
return first_arcp != NULL;
};
int size( void ) const;
friend class ArcsIter;
};
/***************** class ArcsIter ********************************/
class ArcsIter {
// ArcsIter iterates over the arcs starting with epsilon arcs
private:
Arc *current_arcp;
Arc *more_arcs;
public:
typedef enum {all,non_eps,eps} IterType;
ArcsIter( const Arcs *arcs, IterType type=all ) {
more_arcs = NULL;
if (type == all) {
if (arcs->first_epsilon_arcp) {
current_arcp = arcs->first_epsilon_arcp;
more_arcs = arcs->first_arcp;
}
else
current_arcp = arcs->first_arcp;
}
else if (type == non_eps)
current_arcp = arcs->first_arcp;
else
current_arcp = arcs->first_epsilon_arcp;
};
void operator++( int ) {
if (current_arcp) {
current_arcp = current_arcp->next;
if (!current_arcp && more_arcs) {
current_arcp = more_arcs;
more_arcs = NULL;
}
}
};
operator Arc*( void ) const { return current_arcp; };
};
/***************** class Node ************************************/
class Node {
private:
Arcs arcsp;
Node *forwardp;
VType visited;
bool final;
public:
Index index;
Node( void ) { init(); };
void init( void );
bool is_final( void ) const { return final; };
void set_final( bool flag ) { final = flag; };
void set_forward( Node *node ) { forwardp = node; };
const Node *target_node( Label l ) const { return arcs()->target_node(l); };
Node *target_node( Label l ) { return arcs()->target_node(l); };
void add_arc( Label l, Node *n, Transducer *a ) { arcs()->add_arc(l, n, a); };
Arcs *arcs( void ) { return &arcsp; };
const Arcs *arcs( void ) const { return &arcsp; };
Node *forward( void ) { return forwardp; };
void clear_visited( NodeHashSet &nodeset );
bool was_visited( VType vmark ) {
if (visited == vmark)
return true;
visited = vmark;
return false;
};
bool check_visited( VType vm ) // leaves the visited flag unchanged
{ return (visited==vm); };
};
/***************** class PairMapping ****************************/
class PairMapping {
// This class is used to map a node pair from two transducers
// to a single node in another transducer
typedef std::pair<Node*, Node*> NodePair;
private:
struct hashf {
size_t operator()(const NodePair p) const {
return (size_t)p.first ^ (size_t)p.second;
}
};
struct equalf {
int operator()(const NodePair p1, const NodePair p2) const {
return (p1.first==p2.first && p1.second == p2.second);
}
};
typedef hash_map<NodePair, Node*, hashf, equalf> PairMap;
PairMap pm;
public:
typedef PairMap::iterator iterator;
iterator begin( void ) { return pm.begin(); };
iterator end( void ) { return pm.end(); };
iterator find( Node *n1, Node *n2 )
{ return pm.find( NodePair(n1,n2) ); };
Node* &operator[]( NodePair p ) { return pm.operator[](p); };
};
/***************** class Transducer *******************************/
class Transducer {
private:
VType vmark;
Node root;
Mem mem;
size_t node_count;
size_t transition_count;
typedef set<Label, Label::label_cmp> LabelSet;
typedef hash_map<Character, char*> SymbolMap;
void incr_vmark( void ) {
if (++vmark == 0) {
NodeHashSet nodes;
root.clear_visited( nodes );
fprintf(stderr,"clearing flags\n");
vmark = 1;
}
};
void reverse_node( Node *old_node, Transducer *new_node );
Label recode_label( Label, bool lswitch, bool recode, Alphabet& );
Node *copy_nodes( Node *n, Transducer *a,
bool lswitch=false, bool recode=false );
void rec_cat_nodes( Node*, Node* );
void negate_nodes( Node*, Node* );
bool compare_nodes( Node *node, Node *node2, Transducer &a2 );
void map_nodes( Node *node, Node *node2, Transducer *a, Level level );
void freely_insert_at_node( Node *node, Label l );
int print_strings_node(Node *node, char *buffer, int pos, FILE *file, bool);
bool infinitely_ambiguous_node( Node* );
bool is_cyclic_node( Node*, NodeHashSet &visited );
bool is_automaton_node( Node* );
void store_symbols( Node*, SymbolMap&, LabelSet& );
void splice_nodes(Node*, Node*, Label sl, Transducer*, Transducer*);
void splice_arc( Node*, Node*, Node*, Transducer* );
void enumerate_paths_node( Node*, vector<Label>&, NodeHashSet&,
vector<Transducer*>& );
void replace_char2( Node*, Node*, Character, Character, Transducer* );
Node *create_node( vector<Node*>&, char*, size_t line );
void read_transducer_binary( FILE* );
void read_transducer_text( FILE* );
void build_TT( Node *node, vector<Transition> &transtab );
size_t size_node( Node *node );
void index_nodes( Node*, vector<Node*>* );
public:
static bool hopcroft_minimisation;
bool deterministic;
bool minimised;
bool indexed;
Alphabet alphabet; // The set of all labels, i.e. character pairs
Transducer( bool empty=false ) : root(), mem() {
vmark = 0;
deterministic = minimised = empty;
indexed = false;
node_count = transition_count = 0;
};
Transducer( Transducer&, vector<size_t>&, size_t );
// convertion of a string to an transducer
Transducer( char *s, const Alphabet *a=NULL, bool extended=false );
// reads a word list from a file and stores it in the transducer
Transducer( istream&, const Alphabet *a=NULL, bool verbose=false,
bool lexcomments=false );
// reads a transducer from a binary or text file
Transducer( FILE*, bool binary=true );
// turns a sequence of labels into a transducer
Transducer( vector<Label>& );
// HFST additions...
Transducer &expand( set<char*> &s );
Node *expand_nodes( Node *node, Transducer *a, set<char*> &s );
void expand_node( Node *origin, Label &l, Node *target, Transducer *a, set<char*> &s );
void copy_nodes( Node *search_node, Transducer *copy_tr,
Node *start_node,
map<int, Node*> &mapper );
Transducer &remove_epsilons();
// ...HFST additions end
Node *root_node( void ) { return &root; }; // returns the root node
const Node *root_node( void ) const { return &root; }; // returns the root node
Node *new_node( void ); // memory alocation for a new node
Arc *new_arc( Label l, Node *target ); // memory alocation for a new arc
void add_string( char *s, bool extended=false, Alphabet *a=NULL );
void complete_alphabet( void );
void minimise_alphabet( void );
std::pair<size_t,size_t> nodeindexing( vector<Node*> *nodearray=NULL );
int print_strings( FILE*, bool with_brackets=true ); //enumerate all strings
bool analyze_string( char *s, FILE *file, bool with_brackets=true );
bool generate_string( char *s, FILE *file, bool with_brackets=true );
void generate( FILE *file, int max=-1, OutputType ot=Joint );
void clear( void ); // clears the transducer. The resulting transducer
// is like one created with Transducer()
// copy duplicates an transducer
// if called with a non-zero argument, upper and lower level are switched
Transducer ©( bool lswitch=false, const Alphabet *al=NULL );
Transducer &switch_levels( void ) { return copy( true ); };
Transducer &splice( Label l, Transducer *a);
Transducer &freely_insert( Label l );
Transducer &replace_char( Character c, Character nc );
Transducer &level( Level );
Transducer &lower_level( void ) // creates an transducer for the "lower" language
{ return level(lower); };
Transducer &upper_level( void ) // creates an transducer for the "upper" language
{ return level(upper); };
Transducer &determinise( bool copy_alphabet=true ); // creates a deterministic transducer
Transducer &rev_det_minimise( bool verbose );
Transducer &hopcroft_minimise( bool verbose );
Transducer &minimise( bool verbose=true ) {
if (hopcroft_minimisation)
return hopcroft_minimise( verbose );
return rev_det_minimise( verbose );
}
void store( FILE* ); // stores the transducer in binary format
void store_lowmem( FILE* );
void read( FILE* ); // reads an transducer in binary format
bool enumerate_paths( vector<Transducer*>& );
size_t size();
void build_transtab( vector<Transition> &transtab );
Transducer &reverse( bool copy_alphabet=true ); // reverse language
Transducer &operator|( Transducer& ); // union, disjunction
Transducer &operator+( Transducer& ); // concatenation
Transducer &operator/( Transducer& ); // subtraction
Transducer &operator&( Transducer& ); // intersection, conjunction
Transducer &operator||( Transducer& ); // composition
Transducer &operator!( void ); // complement, negation
Transducer &kleene_star( void );
bool operator==( Transducer& ); // minimises its arguments first
bool is_cyclic( void );
bool is_automaton( void );
bool is_infinitely_ambiguous( void );
bool is_empty( void ); // For efficiency reasons, these functions
bool generates_empty_string( void );// are better called after minimisation
friend class EdgeCount;
friend class MakeCompactTransducer;
friend class Minimiser;
friend ostream &operator<<(ostream&, Transducer&);
};
}
#endif
|