/usr/include/simgear/math/SGLocation.hxx is in libsimgear-dev 3.0.0-6+b2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 | // Copyright (C) 2012 Mathias Froehlich - Mathias.Froehlich@web.de
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Library General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Library General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
//
#ifndef SGLocation_HXX
#define SGLocation_HXX
/// Encapsulates a pair SGVec3 and SGQuat.
/// Together they encapsulate a cartesian position/orientation.
/// Included are methods to do a simple euler position propagation step.
template<typename T>
class SGLocation {
public:
SGLocation(const SGVec3<T>& position = SGVec3<T>::zeros(),
const SGQuat<T>& orientation = SGQuat<T>::unit()) :
_position(position),
_orientation(orientation)
{ }
const SGVec3<T>& getPosition() const
{ return _position; }
void setPosition(const SGVec3<T>& position)
{ _position = position; }
const SGQuat<T>& getOrientation() const
{ return _orientation; }
void setOrientation(const SGQuat<T>& orientation)
{ _orientation = orientation; }
/// Returns the absolute position of a relative position relative to this
SGVec3<T> getAbsolutePosition(const SGVec3<T>& relativePosition) const
{ return getOrientation().backTransform(relativePosition) + _position; }
/// Returns the relative position of an absolute position relative to this
SGVec3<T> getRelativePosition(const SGVec3<T>& absolutePosition) const
{ return getOrientation().transform(absolutePosition) - _position; }
/// Returns the absolute orientation of a relative orientation relative to this
SGQuat<T> getAbsoluteOrientation(const SGQuat<T>& relativeOrientation) const
{ return getOrientation()*relativeOrientation; }
/// Returns the relative orientation of an absolute orientation relative to this
SGQuat<T> getRelativeOrientation(const SGQuat<T>& absoluteOrientation) const
{ return inverse(getOrientation())*absoluteOrientation; }
/// Returns the absolute location of a relative location relative to this
SGLocation getAbsoluteLocation(const SGLocation& relativeLocation) const
{
return SGLocation(getAbsolutePosition(relativeLocation.getPosition()),
getAbsoluteOrientation(relativeLocation.getOrientation()));
}
/// Returns the relative location of an absolute location relative to this
SGLocation getRelativeLocation(const SGLocation& absoluteLocation) const
{
return SGLocation(getRelativePosition(absoluteLocation.getPosition()),
getRelativeOrientation(absoluteLocation.getOrientation()));
}
/// Executes an euler step with the given velocities in the current location
void eulerStepBodyVelocities(const T& dt, const SGVec3<T>& linearBodyVelocity, const SGVec3<T>& angularBodyVelocity)
{
// Get the derivatives of the position and orientation due to the body velocities
SGVec3<T> pDot = getOrientation().backTransform(linearBodyVelocity);
SGQuat<T> qDot = getOrientation().derivative(angularBodyVelocity);
// and do the euler step.
setPosition(getPosition() + dt*pDot);
setOrientation(normalize(getOrientation() + dt*qDot));
}
/// Executes an euler step with the given velocities in the current location,
/// The position advance is here done with orientation in the middle of the orientation change.
/// This leads to mostly correct extrapolations with rotating motion - even for longer times.
void eulerStepBodyVelocitiesMidOrientation(const T& dt, const SGVec3<T>& linearBodyVelocity, const SGVec3<T>& angularBodyVelocity)
{
// Store the old orientation ...
SGQuat<T> orientation = getOrientation();
// ... and compute the new orientation
SGQuat<T> qDot = orientation.derivative(angularBodyVelocity);
setOrientation(normalize(orientation + dt*qDot));
// Then with the orientation in between, advance the position
SGQuat<T> orientation05 = normalize(getOrientation() + orientation);
SGVec3<T> pDot = orientation05.backTransform(linearBodyVelocity);
setPosition(getPosition() + dt*pDot);
}
/// Executes an euler step with the given velocities in the current location
void eulerStepGlobalVelocities(const T& dt, const SGVec3<T>& linearVelocity, const SGVec3<T>& angularVelocity)
{
// Get the derivatives of the orientation in the body system
SGVec3<T> angularBodyVelocity = getOrientation().transform(angularVelocity);
SGQuat<T> qDot = getOrientation().derivative(angularBodyVelocity);
// and do the euler step.
setPosition(getPosition() + dt*linearVelocity);
setOrientation(normalize(getOrientation() + dt*qDot));
}
private:
SGVec3<T> _position;
SGQuat<T> _orientation;
};
#endif
|