This file is indexed.

/usr/include/sofa/component/constraint/ParabolicConstraint.inl is in libsofa1-dev 1.0~beta4-9.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
/******************************************************************************
*       SOFA, Simulation Open-Framework Architecture, version 1.0 beta 4      *
*                (c) 2006-2009 MGH, INRIA, USTL, UJF, CNRS                    *
*                                                                             *
* This library is free software; you can redistribute it and/or modify it     *
* under the terms of the GNU Lesser General Public License as published by    *
* the Free Software Foundation; either version 2.1 of the License, or (at     *
* your option) any later version.                                             *
*                                                                             *
* This library is distributed in the hope that it will be useful, but WITHOUT *
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or       *
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License *
* for more details.                                                           *
*                                                                             *
* You should have received a copy of the GNU Lesser General Public License    *
* along with this library; if not, write to the Free Software Foundation,     *
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301 USA.          *
*******************************************************************************
*                               SOFA :: Modules                               *
*                                                                             *
* Authors: The SOFA Team and external contributors (see Authors.txt)          *
*                                                                             *
* Contact information: contact@sofa-framework.org                             *
******************************************************************************/
#ifndef SOFA_COMPONENT_CONSTRAINT_PARABOLICCONSTRAINT_INL
#define SOFA_COMPONENT_CONSTRAINT_PARABOLICCONSTRAINT_INL

#include <sofa/component/constraint/ParabolicConstraint.h>
#include <sofa/helper/gl/template.h>

namespace sofa
{

namespace component
{

namespace constraint
{

using namespace sofa::defaulttype;
using namespace sofa::helper;

template <class DataTypes>
ParabolicConstraint<DataTypes>::ParabolicConstraint()
:core::componentmodel::behavior::Constraint<DataTypes>(NULL)
, m_indices( initData(&m_indices,"indices","Indices of the constrained points") )
, m_P1(initData(&m_P1,"P1","first point of the parabol") )
, m_P2(initData(&m_P2,"P2","second point of the parabol") )
, m_P3(initData(&m_P3,"P3","third point of the parabol") )
, m_tBegin(initData(&m_tBegin,"BeginTime","Begin Time of the motion") )
, m_tEnd(initData(&m_tEnd,"EndTime","End Time of the motion") )
{
}


template <class DataTypes>
ParabolicConstraint<DataTypes>::ParabolicConstraint(core::componentmodel::behavior::MechanicalState<DataTypes>* mstate)
: core::componentmodel::behavior::Constraint<DataTypes>(mstate)
, m_indices( initData(&m_indices,"indices","Indices of the constrained points") )
, m_P1(initData(&m_P1,"P1","first point of the parabol") )
, m_P2(initData(&m_P2,"P2","second point of the parabol") )
, m_P3(initData(&m_P3,"P3","third point of the parabol") )
, m_tBegin(initData(&m_tBegin,"BeginTime","Begin Time of the motion") )
, m_tEnd(initData(&m_tEnd,"EndTime","End Time of the motion") )
{
}

template <class DataTypes>
ParabolicConstraint<DataTypes>::~ParabolicConstraint()
{
}

template <class DataTypes>
void  ParabolicConstraint<DataTypes>::addConstraint(unsigned index)
{
	m_indices.beginEdit()->push_back(index);
    m_indices.endEdit();
}


template <class DataTypes>
void ParabolicConstraint<DataTypes>::init()
{
	this->core::componentmodel::behavior::Constraint<DataTypes>::init();

	Vec3R P1 = m_P1.getValue();
	Vec3R P2 = m_P2.getValue();
	Vec3R P3 = m_P3.getValue();

	//compute the projection to go in the parabol plan,
	//such as P1 is the origin, P1P3 vector is the x axis, and P1P2 is in the xy plan
	//by the way the computation of the parabol equation is much easier
	if(P1 != P2 && P1 != P3 && P2 != P3){

		Vec3R P1P2 = P2 - P1;
		Vec3R P1P3 = P3 - P1;

		Vec3R ax = P1P3;
		Vec3R az = cross(P1P3, P1P2);
		Vec3R ay = cross(az, ax);
		ax.normalize();
		ay.normalize();
		az.normalize();

		Mat<3,3,Real> Mrot(ax, ay, az);
		Mat<3,3,Real> Mrot2;
		Mrot2.transpose(Mrot);
		m_projection.fromMatrix(Mrot2);
		m_projection.normalize();

		m_locP1 = Vec3R();
		m_locP2 =  m_projection.inverseRotate(P1P2);
		m_locP3 =  m_projection.inverseRotate(P1P3);
	}
}

template <class DataTypes>
void ParabolicConstraint<DataTypes>::reinit()
{
	init();
}


template <class DataTypes>
void ParabolicConstraint<DataTypes>::projectResponse(VecDeriv& dx)
{
	Real t = (Real) getContext()->getTime();
	if ( t >= m_tBegin.getValue() && t <= m_tEnd.getValue())
	{
		const SetIndexArray & indices = m_indices.getValue().getArray();
		for(SetIndexArray::const_iterator it = indices.begin(); it != indices.end(); ++it)
			dx[*it] = Deriv();
	}
}

template <class DataTypes>
void ParabolicConstraint<DataTypes>::projectVelocity(VecDeriv& dx)
{
	Real t = (Real) getContext()->getTime();
	Real dt = (Real) getContext()->getDt();

	if ( t >= m_tBegin.getValue() && t <= m_tEnd.getValue()	)
	{
		Real relativeTime = (t - m_tBegin.getValue() ) / (m_tEnd.getValue() - m_tBegin.getValue());
		const SetIndexArray & indices = m_indices.getValue().getArray();

		for(SetIndexArray::const_iterator it = indices.begin(); it != indices.end(); ++it)
		{
			//compute velocity by doing v = dx/dt
			Real pxP = m_locP3.x()*relativeTime;
			Real pyP = (- m_locP2.y() / (m_locP3.x()*m_locP2.x() - m_locP2.x()*m_locP2.x())) * (pxP *pxP) + ( (m_locP3.x()*m_locP2.y()) / (m_locP3.x()*m_locP2.x() - m_locP2.x()*m_locP2.x())) * pxP;
			relativeTime = (t+dt - m_tBegin.getValue() ) / (m_tEnd.getValue() - m_tBegin.getValue());
			Real pxN = m_locP3.x()*relativeTime;
			Real pyN = (- m_locP2.y() / (m_locP3.x()*m_locP2.x() - m_locP2.x()*m_locP2.x())) * (pxN *pxN) + ( (m_locP3.x()*m_locP2.y()) / (m_locP3.x()*m_locP2.x() - m_locP2.x()*m_locP2.x())) * pxN;

			Vec3R locVel = Vec3R( (pxN-pxP)/dt, (pyN-pyP)/dt, 0.0);

			Vec3R worldVel = m_projection.rotate(locVel);

			dx[*it] = worldVel;
		}
	}
}

template <class DataTypes>
void ParabolicConstraint<DataTypes>::projectPosition(VecCoord& x)
{
	Real t = (Real) getContext()->getTime();

	if ( t >= m_tBegin.getValue() && t <= m_tEnd.getValue()	)
	{
		Real relativeTime = (t - m_tBegin.getValue() ) / (m_tEnd.getValue() - m_tBegin.getValue());
		const SetIndexArray & indices = m_indices.getValue().getArray();

		for(SetIndexArray::const_iterator it = indices.begin(); it != indices.end(); ++it)
		{
			//compute position from the equation of the parabol : Y = -y2/(x3*x2-x2²) * X² + (x3*y2)/(x3*x2-x2²) * X
			//with P1:(0,0,0), P2:(x2,y2,z2), P3:(x3,y3,z3) , projected in parabol plan
			Real px = m_locP3.x()*relativeTime;
			Real py = (- m_locP2.y() / (m_locP3.x()*m_locP2.x() - m_locP2.x()*m_locP2.x())) * (px *px) + ( (m_locP3.x()*m_locP2.y()) / (m_locP3.x()*m_locP2.x() - m_locP2.x()*m_locP2.x())) * px;
			Vec3R locPos( px , py, 0.0);

			//projection to world coordinates
			Vec3R worldPos = m_P1.getValue() + m_projection.rotate(locPos);

			x[*it] = worldPos;
		}
	}
}


template <class DataTypes>
void ParabolicConstraint<DataTypes>::draw()
{
    if (!getContext()->getShowBehaviorModels()) return;

	Real dt = (Real) getContext()->getDt();
	Real t = m_tEnd.getValue() - m_tBegin.getValue();
	Real nbStep = t/dt;

    glDisable (GL_LIGHTING);
    glPointSize(5);
    glColor4f (1,0.5,0.5,1);

	glBegin (GL_LINES);
	for (unsigned int i=0 ; i< nbStep ; i++){
		//draw lines between each step of the parabolic trajectory
		//so, the smaller is dt, the finer is the parabol
		Real relativeTime = i/nbStep;
		Real px = m_locP3.x()*relativeTime;
		Real py = (- m_locP2.y() / (m_locP3.x()*m_locP2.x() - m_locP2.x()*m_locP2.x())) * (px *px) + ( (m_locP3.x()*m_locP2.y()) / (m_locP3.x()*m_locP2.x() - m_locP2.x()*m_locP2.x())) * px;
		Vec3R locPos( px , py, 0.0);
		Vec3R worldPos = m_P1.getValue() + m_projection.rotate(locPos);
		
		gl::glVertexT(worldPos);

		relativeTime = (i+1)/nbStep;
		px = m_locP3.x()*relativeTime;
		py = (- m_locP2.y() / (m_locP3.x()*m_locP2.x() - m_locP2.x()*m_locP2.x())) * (px *px) + ( (m_locP3.x()*m_locP2.y()) / (m_locP3.x()*m_locP2.x() - m_locP2.x()*m_locP2.x())) * px;
		locPos = Vec3R( px , py, 0.0);
		worldPos = m_P1.getValue() + m_projection.rotate(locPos);
		gl::glVertexT(worldPos);
	}
	glEnd();

	//draw points for the 3 control points
	glBegin(GL_POINTS);
	gl::glVertexT(m_P1.getValue());
	gl::glVertexT(m_P2.getValue());
	gl::glVertexT(m_P3.getValue());
	glEnd();
}


} // namespace constraint

} // namespace component

} // namespace sofa

#endif