/usr/include/spandsp/dds.h is in libspandsp-dev 0.0.6-2+b2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 | /*
* SpanDSP - a series of DSP components for telephony
*
* dds.h
*
* Written by Steve Underwood <steveu@coppice.org>
*
* Copyright (C) 2003 Steve Underwood
*
* All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License version 2.1,
* as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*! \file */
#if !defined(_SPANDSP_DDS_H_)
#define _SPANDSP_DDS_H_
#define DDS_PHASE_RATE(frequency) (int32_t) ((frequency)*65536.0f*65536.0f/SAMPLE_RATE)
#define DDS_PHASE(angle) (int32_t) ((uint32_t) (((angle < 0.0f) ? (360.0f + angle) : angle)*65536.0f*65536.0f/360.0f))
#if defined(__cplusplus)
extern "C"
{
#endif
/*! \brief Convert a 32 bit phase angle to an angle in radians, between 0 and 2*PI
\param phase The angle to convert.
\return The angle in radians.
*/
SPAN_DECLARE(float) dds_phase_to_radians(uint32_t phase);
/*! \brief Find the phase rate value to achieve a particular frequency.
\param frequency The desired frequency, in Hz.
\return The phase rate which while achieve the desired frequency.
*/
SPAN_DECLARE(int32_t) dds_phase_rate(float frequency);
/*! \brief Find the frequency, in Hz, equivalent to a phase rate.
\param phase_rate The phase rate.
\return The equivalent frequency, in Hz.
*/
SPAN_DECLARE(float) dds_frequency(int32_t phase_rate);
/*! \brief Find the scaling factor needed to achieve a specified level in dBm0.
\param level The desired signal level, in dBm0.
\return The scaling factor.
*/
SPAN_DECLARE(int16_t) dds_scaling_dbm0(float level);
/*! \brief Find the scaling factor needed to achieve a specified level in dBmov.
\param level The desired signal level, in dBmov.
\return The scaling factor.
*/
SPAN_DECLARE(int16_t) dds_scaling_dbov(float level);
/*! \brief Find the amplitude for a particular phase.
\param phase The desired phase 32 bit phase.
\return The signal amplitude.
*/
SPAN_DECLARE(int16_t) dds_lookup(uint32_t phase);
/*! \brief Find the amplitude for a particular phase offset from an accumulated phase.
\param phase_acc The accumulated phase.
\param phase_offset The phase offset.
\return The signal amplitude.
*/
SPAN_DECLARE(int16_t) dds_offset(uint32_t phase_acc, int32_t phase_offset);
/*! \brief Advance the phase, without returning any new signal sample.
\param phase_acc A pointer to a phase accumulator value.
\param phase_rate The phase increment to be applied.
*/
SPAN_DECLARE(void) dds_advance(uint32_t *phase_acc, int32_t phase_rate);
/*! \brief Generate an integer tone sample.
\param phase_acc A pointer to a phase accumulator value.
\param phase_rate The phase increment to be applied.
\return The signal amplitude, between -32767 and 32767.
*/
SPAN_DECLARE(int16_t) dds(uint32_t *phase_acc, int32_t phase_rate);
/*! \brief Lookup the integer value of a specified phase.
\param phase The phase accumulator value to be looked up.
\return The signal amplitude, between -32767 and 32767.
*/
SPAN_DECLARE(int16_t) dds_lookup(uint32_t phase);
/*! \brief Generate an integer tone sample, with modulation.
\param phase_acc A pointer to a phase accumulator value.
\param phase_rate The phase increment to be applied.
\param scale The scaling factor.
\param phase The phase offset.
\return The signal amplitude, between -32767 and 32767.
*/
SPAN_DECLARE(int16_t) dds_mod(uint32_t *phase_acc, int32_t phase_rate, int16_t scale, int32_t phase);
/*! \brief Lookup the complex integer value of a specified phase.
\param phase The phase accumulator value to be looked up.
\return The complex signal amplitude, between (-32767, -32767) and (32767, 32767).
*/
SPAN_DECLARE(complexi_t) dds_lookup_complexi(uint32_t phase);
/*! \brief Generate a complex integer tone sample.
\param phase_acc A pointer to a phase accumulator value.
\param phase_rate The phase increment to be applied.
\return The complex signal amplitude, between (-32767, -32767) and (32767, 32767).
*/
SPAN_DECLARE(complexi_t) dds_complexi(uint32_t *phase_acc, int32_t phase_rate);
/*! \brief Generate a complex integer tone sample, with modulation.
\param phase_acc A pointer to a phase accumulator value.
\param phase_rate The phase increment to be applied.
\param scale The scaling factor.
\param phase The phase offset.
\return The complex signal amplitude, between (-32767, -32767) and (32767, 32767).
*/
SPAN_DECLARE(complexi_t) dds_complexi_mod(uint32_t *phase_acc, int32_t phase_rate, int16_t scale, int32_t phase);
/*! \brief Generate a complex 16 bit integer tone sample.
\param phase_acc A pointer to a phase accumulator value.
\param phase_rate The phase increment to be applied.
\return The complex signal amplitude, between (-32767, -32767) and (32767, 32767).
*/
SPAN_DECLARE(complexi16_t) dds_lookup_complexi16(uint32_t phase);
/*! \brief Generate a complex 16 bit integer tone sample.
\param phase_acc A pointer to a phase accumulator value.
\param phase_rate The phase increment to be applied.
\return The complex signal amplitude, between (-32767, -32767) and (32767, 32767).
*/
SPAN_DECLARE(complexi16_t) dds_complexi16(uint32_t *phase_acc, int32_t phase_rate);
/*! \brief Generate a complex 16bit integer tone sample, with modulation.
\param phase_acc A pointer to a phase accumulator value.
\param phase_rate The phase increment to be applied.
\param scale The scaling factor.
\param phase The phase offset.
\return The complex signal amplitude, between (-32767, -32767) and (32767, 32767).
*/
SPAN_DECLARE(complexi16_t) dds_complexi16_mod(uint32_t *phase_acc, int32_t phase_rate, int16_t scale, int32_t phase);
/*! \brief Generate a complex 32 bit integer tone sample, with modulation.
\param phase_acc A pointer to a phase accumulator value.
\param phase_rate The phase increment to be applied.
\param scale The scaling factor.
\param phase The phase offset.
\return The complex signal amplitude, between (-32767, -32767) and (32767, 32767).
*/
SPAN_DECLARE(complexi32_t) dds_complexi32_mod(uint32_t *phase_acc, int32_t phase_rate, int16_t scale, int32_t phase);
/*! \brief Generate a complex 32 bit integer tone sample.
\param phase_acc A pointer to a phase accumulator value.
\param phase_rate The phase increment to be applied.
\return The complex signal amplitude, between (-32767, -32767) and (32767, 32767).
*/
SPAN_DECLARE(complexi32_t) dds_lookup_complexi32(uint32_t phase);
/*! \brief Generate a complex 32 bit integer tone sample.
\param phase_acc A pointer to a phase accumulator value.
\param phase_rate The phase increment to be applied.
\return The complex signal amplitude, between (-32767, -32767) and (32767, 32767).
*/
SPAN_DECLARE(complexi32_t) dds_complexi32(uint32_t *phase_acc, int32_t phase_rate);
/*! \brief Generate a complex 32 bit integer tone sample, with modulation.
\param phase_acc A pointer to a phase accumulator value.
\param phase_rate The phase increment to be applied.
\param scale The scaling factor.
\param phase The phase offset.
\return The complex signal amplitude, between (-32767, -32767) and (32767, 32767).
*/
SPAN_DECLARE(complexi32_t) dds_complexi32_mod(uint32_t *phase_acc, int32_t phase_rate, int16_t scale, int32_t phase);
/*! \brief Find the phase rate equivalent to a frequency, in Hz.
\param frequency The frequency, in Hz.
\return The equivalent phase rate.
*/
SPAN_DECLARE(int32_t) dds_phase_ratef(float frequency);
/*! \brief Find the frequency, in Hz, equivalent to a phase rate.
\param phase_rate The phase rate.
\return The equivalent frequency, in Hz.
*/
SPAN_DECLARE(float) dds_frequencyf(int32_t phase_rate);
/*! \brief Find the scaling factor equivalent to a dBm0 value.
\param level The signal level in dBm0.
\return The equivalent scaling factor.
*/
SPAN_DECLARE(float) dds_scaling_dbm0f(float level);
/*! \brief Find the scaling factor equivalent to a dBmov value.
\param level The signal level in dBmov.
\return The equivalent scaling factor.
*/
SPAN_DECLARE(float) dds_scaling_dbovf(float level);
/*! \brief Advance the phase, without returning any new signal sample.
\param phase_acc A pointer to a phase accumulator value.
\param phase_rate The phase increment to be applied.
*/
SPAN_DECLARE(void) dds_advancef(uint32_t *phase_acc, int32_t phase_rate);
/*! \brief Generate a floating point tone sample.
\param phase_acc A pointer to a phase accumulator value.
\param phase_rate The phase increment to be applied.
\return The signal amplitude, between -1.0 and 1.0.
*/
SPAN_DECLARE(float) ddsf(uint32_t *phase_acc, int32_t phase_rate);
/*! \brief Lookup the floating point value of a specified phase.
\param phase The phase accumulator value to be looked up.
\return The signal amplitude, between -1.0 and 1.0.
*/
SPAN_DECLARE(float) dds_lookupf(uint32_t phase);
/*! \brief Generate a floating point tone sample, with modulation.
\param phase_acc A pointer to a phase accumulator value.
\param phase_rate The phase increment to be applied.
\param scale The scaling factor.
\param phase The phase offset.
\return The signal amplitude, between -1.0 and 1.0.
*/
SPAN_DECLARE(float) dds_modf(uint32_t *phase_acc, int32_t phase_rate, float scale, int32_t phase);
/*! \brief Generate a complex floating point tone sample.
\param phase_acc A pointer to a phase accumulator value.
\param phase_rate The phase increment to be applied.
\return The complex signal amplitude, between (-1.0, -1.0) and (1.0, 1.0).
*/
SPAN_DECLARE(complexf_t) dds_complexf(uint32_t *phase_acc, int32_t phase_rate);
/*! \brief Lookup the complex value of a specified phase.
\param phase The phase accumulator value to be looked up.
\return The complex signal amplitude, between (-1.0, -1.0) and (1.0, 1.0).
*/
SPAN_DECLARE(complexf_t) dds_lookup_complexf(uint32_t phase_acc);
/*! \brief Generate a complex floating point tone sample, with modulation.
\param phase_acc A pointer to a phase accumulator value.
\param phase_rate The phase increment to be applied.
\param scale The scaling factor.
\param phase The phase offset.
\return The complex signal amplitude, between (-1.0, -1.0) and (1.0, 1.0).
*/
SPAN_DECLARE(complexf_t) dds_complex_modf(uint32_t *phase_acc, int32_t phase_rate, float scale, int32_t phase);
#if defined(__cplusplus)
}
#endif
#endif
/*- End of file ------------------------------------------------------------*/
|