This file is indexed.

/usr/share/doc/libsundials-serial-dev/examples/cvode/parallel/cvDiurnal_kry_bbd_p.c is in libsundials-serial-dev 2.5.0-3+b1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
/*
 * -----------------------------------------------------------------
 * $Revision: 1.4 $
 * $Date: 2010/12/14 21:31:59 $
 * -----------------------------------------------------------------
 * Programmer(s): S. D. Cohen, A. C. Hindmarsh, M. R. Wittman, and
 *                Radu Serban  @ LLNL
 * --------------------------------------------------------------------
 * Example problem:
 *
 * An ODE system is generated from the following 2-species diurnal
 * kinetics advection-diffusion PDE system in 2 space dimensions:
 *
 * dc(i)/dt = Kh*(d/dx)^2 c(i) + V*dc(i)/dx + (d/dy)(Kv(y)*dc(i)/dy)
 *                 + Ri(c1,c2,t)      for i = 1,2,   where
 *   R1(c1,c2,t) = -q1*c1*c3 - q2*c1*c2 + 2*q3(t)*c3 + q4(t)*c2 ,
 *   R2(c1,c2,t) =  q1*c1*c3 - q2*c1*c2 - q4(t)*c2 ,
 *   Kv(y) = Kv0*exp(y/5) ,
 * Kh, V, Kv0, q1, q2, and c3 are constants, and q3(t) and q4(t)
 * vary diurnally. The problem is posed on the square
 *   0 <= x <= 20,    30 <= y <= 50   (all in km),
 * with homogeneous Neumann boundary conditions, and for time t in
 *   0 <= t <= 86400 sec (1 day).
 * The PDE system is treated by central differences on a uniform
 * mesh, with simple polynomial initial profiles.
 *
 * The problem is solved by CVODE on NPE processors, treated
 * as a rectangular process grid of size NPEX by NPEY, with
 * NPE = NPEX*NPEY. Each processor contains a subgrid of size MXSUB
 * by MYSUB of the (x,y) mesh. Thus the actual mesh sizes are
 * MX = MXSUB*NPEX and MY = MYSUB*NPEY, and the ODE system size is
 * neq = 2*MX*MY.
 *
 * The solution is done with the BDF/GMRES method (i.e. using the
 * CVSPGMR linear solver) and a block-diagonal matrix with banded
 * blocks as a preconditioner, using the CVBBDPRE module.
 * Each block is generated using difference quotients, with
 * half-bandwidths mudq = mldq = 2*MXSUB, but the retained banded
 * blocks have half-bandwidths mukeep = mlkeep = 2.
 * A copy of the approximate Jacobian is saved and conditionally
 * reused within the preconditioner routine.
 *
 * The problem is solved twice -- with left and right preconditioning.
 *
 * Performance data and sampled solution values are printed at
 * selected output times, and all performance counters are printed
 * on completion.
 *
 * This version uses MPI for user routines.
 * Execute with number of processors = NPEX*NPEY (see constants below).
 * --------------------------------------------------------------------
 */

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#include <cvode/cvode.h>              /* prototypes for CVODE fcts. */
#include <cvode/cvode_spgmr.h>        /* prototypes and constants for CVSPGMR */
#include <cvode/cvode_bbdpre.h>       /* prototypes for CVBBDPRE module */
#include <nvector/nvector_parallel.h> /* def. of N_Vector, macro NV_DATA_P */
#include <sundials/sundials_types.h>  /* definitions of realtype, booleantype */
#include <sundials/sundials_math.h>   /* definition of macros SQR and EXP */

#include <mpi.h>                      /* MPI constants and types */


/* Problem Constants */

#define ZERO         RCONST(0.0)

#define NVARS        2                 /* number of species         */
#define KH           RCONST(4.0e-6)    /* horizontal diffusivity Kh */
#define VEL          RCONST(0.001)     /* advection velocity V      */
#define KV0          RCONST(1.0e-8)    /* coefficient in Kv(y)      */
#define Q1           RCONST(1.63e-16)  /* coefficients q1, q2, c3   */ 
#define Q2           RCONST(4.66e-16)
#define C3           RCONST(3.7e16)
#define A3           RCONST(22.62)     /* coefficient in expression for q3(t) */
#define A4           RCONST(7.601)     /* coefficient in expression for q4(t) */
#define C1_SCALE     RCONST(1.0e6)     /* coefficients in initial profiles    */
#define C2_SCALE     RCONST(1.0e12)

#define T0           ZERO                /* initial time */
#define NOUT         12                  /* number of output times */
#define TWOHR        RCONST(7200.0)      /* number of seconds in two hours  */
#define HALFDAY      RCONST(4.32e4)      /* number of seconds in a half day */
#define PI       RCONST(3.1415926535898) /* pi */ 

#define XMIN         ZERO                /* grid boundaries in x  */
#define XMAX         RCONST(20.0)
#define YMIN         RCONST(30.0)        /* grid boundaries in y  */
#define YMAX         RCONST(50.0)

#define NPEX         2              /* no. PEs in x direction of PE array */
#define NPEY         2              /* no. PEs in y direction of PE array */
                                    /* Total no. PEs = NPEX*NPEY */
#define MXSUB        5              /* no. x points per subgrid */
#define MYSUB        5              /* no. y points per subgrid */

#define MX           (NPEX*MXSUB)   /* MX = number of x mesh points */
#define MY           (NPEY*MYSUB)   /* MY = number of y mesh points */
                                    /* Spatial mesh is MX by MY */
/* CVodeInit Constants */

#define RTOL    RCONST(1.0e-5)    /* scalar relative tolerance */
#define FLOOR   RCONST(100.0)     /* value of C1 or C2 at which tolerances */
                                  /* change from relative to absolute      */
#define ATOL    (RTOL*FLOOR)      /* scalar absolute tolerance */

/* Type : UserData 
   contains problem constants, extended dependent variable array,
   grid constants, processor indices, MPI communicator */

typedef struct {
  realtype q4, om, dx, dy, hdco, haco, vdco;
  realtype uext[NVARS*(MXSUB+2)*(MYSUB+2)];
  int my_pe, isubx, isuby;
  long int nvmxsub, nvmxsub2, Nlocal;
  MPI_Comm comm;
} *UserData;

/* Prototypes of private helper functions */

static void InitUserData(int my_pe, long int local_N, MPI_Comm comm,
                         UserData data);
static void SetInitialProfiles(N_Vector u, UserData data);
static void PrintIntro(int npes, long int mudq, long int mldq,
		       long int mukeep, long int mlkeep);
static void PrintOutput(void *cvode_mem, int my_pe, MPI_Comm comm,
                        N_Vector u, realtype t);
static void PrintFinalStats(void *cvode_mem);
static void BSend(MPI_Comm comm, 
                  int my_pe, int isubx, int isuby, 
                  long int dsizex, long int dsizey,
                  realtype uarray[]);
static void BRecvPost(MPI_Comm comm, MPI_Request request[], 
                      int my_pe, int isubx, int isuby,
		      long int dsizex, long int dsizey,
		      realtype uext[], realtype buffer[]);
static void BRecvWait(MPI_Request request[], 
                      int isubx, int isuby, 
                      long int dsizex, realtype uext[],
                      realtype buffer[]);

static void fucomm(realtype t, N_Vector u, void *user_data);

/* Prototype of function called by the solver */

static int f(realtype t, N_Vector u, N_Vector udot, void *user_data);

/* Prototype of functions called by the CVBBDPRE module */

static int flocal(long int Nlocal, realtype t, N_Vector u,
                  N_Vector udot, void *user_data);

/* Private function to check function return values */

static int check_flag(void *flagvalue, char *funcname, int opt, int id);

/***************************** Main Program ******************************/

int main(int argc, char *argv[])
{
  UserData data;
  void *cvode_mem;
  realtype abstol, reltol, t, tout;
  N_Vector u;
  int iout, my_pe, npes, flag, jpre;
  long int neq, local_N, mudq, mldq, mukeep, mlkeep;
  MPI_Comm comm;

  data = NULL;
  cvode_mem = NULL;
  u = NULL;

  /* Set problem size neq */
  neq = NVARS*MX*MY;

  /* Get processor number and total number of pe's */
  MPI_Init(&argc, &argv);
  comm = MPI_COMM_WORLD;
  MPI_Comm_size(comm, &npes);
  MPI_Comm_rank(comm, &my_pe);

  if (npes != NPEX*NPEY) {
    if (my_pe == 0)
      fprintf(stderr, "\nMPI_ERROR(0): npes = %d is not equal to NPEX*NPEY = %d\n\n",
              npes, NPEX*NPEY);
    MPI_Finalize();
    return(1);
  }

  /* Set local length */
  local_N = NVARS*MXSUB*MYSUB;

  /* Allocate and load user data block */
  data = (UserData) malloc(sizeof *data);
  if(check_flag((void *)data, "malloc", 2, my_pe)) MPI_Abort(comm, 1);
  InitUserData(my_pe, local_N, comm, data);

  /* Allocate and initialize u, and set tolerances */ 
  u = N_VNew_Parallel(comm, local_N, neq);
  if(check_flag((void *)u, "N_VNew_Parallel", 0, my_pe)) MPI_Abort(comm, 1);
  SetInitialProfiles(u, data);
  abstol = ATOL;
  reltol = RTOL;

  /* Call CVodeCreate to create the solver memory and specify the 
   * Backward Differentiation Formula and the use of a Newton iteration */
  cvode_mem = CVodeCreate(CV_BDF, CV_NEWTON);
  if(check_flag((void *)cvode_mem, "CVodeCreate", 0, my_pe)) MPI_Abort(comm, 1);

  /* Set the pointer to user-defined data */
  flag = CVodeSetUserData(cvode_mem, data);
  if(check_flag(&flag, "CVodeSetUserData", 1, my_pe)) MPI_Abort(comm, 1);

  /* Call CVodeInit to initialize the integrator memory and specify the
   * user's right hand side function in u'=f(t,u), the inital time T0, and
   * the initial dependent variable vector u. */
  flag = CVodeInit(cvode_mem, f, T0, u);
  if(check_flag(&flag, "CVodeInit", 1, my_pe)) return(1);

  /* Call CVodeSStolerances to specify the scalar relative tolerance
   * and scalar absolute tolerances */
  flag = CVodeSStolerances(cvode_mem, reltol, abstol);
  if (check_flag(&flag, "CVodeSStolerances", 1, my_pe)) return(1);

  /* Call CVSpgmr to specify the linear solver CVSPGMR with left
     preconditioning and the default maximum Krylov dimension maxl  */
  flag = CVSpgmr(cvode_mem, PREC_LEFT, 0);
  if(check_flag(&flag, "CVBBDSpgmr", 1, my_pe)) MPI_Abort(comm, 1);

  /* Initialize BBD preconditioner */
  mudq = mldq = NVARS*MXSUB;
  mukeep = mlkeep = NVARS;
  flag = CVBBDPrecInit(cvode_mem, local_N, mudq, mldq, 
                       mukeep, mlkeep, ZERO, flocal, NULL);
  if(check_flag(&flag, "CVBBDPrecAlloc", 1, my_pe)) MPI_Abort(comm, 1);

  /* Print heading */
  if (my_pe == 0) PrintIntro(npes, mudq, mldq, mukeep, mlkeep);

  /* Loop over jpre (= PREC_LEFT, PREC_RIGHT), and solve the problem */
  for (jpre = PREC_LEFT; jpre <= PREC_RIGHT; jpre++) {

  /* On second run, re-initialize u, the integrator, CVBBDPRE, and CVSPGMR */

  if (jpre == PREC_RIGHT) {

    SetInitialProfiles(u, data);

    flag = CVodeReInit(cvode_mem, T0, u);
    if(check_flag(&flag, "CVodeReInit", 1, my_pe)) MPI_Abort(comm, 1);

    flag = CVBBDPrecReInit(cvode_mem, mudq, mldq, ZERO);
    if(check_flag(&flag, "CVBBDPrecReInit", 1, my_pe)) MPI_Abort(comm, 1);

    flag = CVSpilsSetPrecType(cvode_mem, PREC_RIGHT);
    check_flag(&flag, "CVSpilsSetPrecType", 1, my_pe);

    if (my_pe == 0) {
      printf("\n\n-------------------------------------------------------");
      printf("------------\n");
    }

  }


  if (my_pe == 0) {
    printf("\n\nPreconditioner type is:  jpre = %s\n\n",
	   (jpre == PREC_LEFT) ? "PREC_LEFT" : "PREC_RIGHT");
  }

  /* In loop over output points, call CVode, print results, test for error */

  for (iout = 1, tout = TWOHR; iout <= NOUT; iout++, tout += TWOHR) {
    flag = CVode(cvode_mem, tout, u, &t, CV_NORMAL);
    if(check_flag(&flag, "CVode", 1, my_pe)) break;
    PrintOutput(cvode_mem, my_pe, comm, u, t);
  }

  /* Print final statistics */

  if (my_pe == 0) PrintFinalStats(cvode_mem);

  } /* End of jpre loop */

  /* Free memory */
  N_VDestroy_Parallel(u);
  free(data);
  CVodeFree(&cvode_mem);

  MPI_Finalize();

  return(0);
}

/*********************** Private Helper Functions ************************/

/* Load constants in data */

static void InitUserData(int my_pe, long int local_N, MPI_Comm comm,
                         UserData data)
{
  int isubx, isuby;

  /* Set problem constants */
  data->om = PI/HALFDAY;
  data->dx = (XMAX-XMIN)/((realtype)(MX-1));
  data->dy = (YMAX-YMIN)/((realtype)(MY-1));
  data->hdco = KH/SQR(data->dx);
  data->haco = VEL/(RCONST(2.0)*data->dx);
  data->vdco = (RCONST(1.0)/SQR(data->dy))*KV0;

  /* Set machine-related constants */
  data->comm = comm;
  data->my_pe = my_pe;
  data->Nlocal = local_N;
  /* isubx and isuby are the PE grid indices corresponding to my_pe */
  isuby = my_pe/NPEX;
  isubx = my_pe - isuby*NPEX;
  data->isubx = isubx;
  data->isuby = isuby;
  /* Set the sizes of a boundary x-line in u and uext */
  data->nvmxsub = NVARS*MXSUB;
  data->nvmxsub2 = NVARS*(MXSUB+2);
}

/* Set initial conditions in u */

static void SetInitialProfiles(N_Vector u, UserData data)
{
  int isubx, isuby;
  int lx, ly, jx, jy;
  long int offset;
  realtype dx, dy, x, y, cx, cy, xmid, ymid;
  realtype *uarray;

  /* Set pointer to data array in vector u */

  uarray = NV_DATA_P(u);

  /* Get mesh spacings, and subgrid indices for this PE */

  dx = data->dx;         dy = data->dy;
  isubx = data->isubx;   isuby = data->isuby;

  /* Load initial profiles of c1 and c2 into local u vector.
  Here lx and ly are local mesh point indices on the local subgrid,
  and jx and jy are the global mesh point indices. */

  offset = 0;
  xmid = RCONST(0.5)*(XMIN + XMAX);
  ymid = RCONST(0.5)*(YMIN + YMAX);
  for (ly = 0; ly < MYSUB; ly++) {
    jy = ly + isuby*MYSUB;
    y = YMIN + jy*dy;
    cy = SQR(RCONST(0.1)*(y - ymid));
    cy = RCONST(1.0) - cy + RCONST(0.5)*SQR(cy);
    for (lx = 0; lx < MXSUB; lx++) {
      jx = lx + isubx*MXSUB;
      x = XMIN + jx*dx;
      cx = SQR(RCONST(0.1)*(x - xmid));
      cx = RCONST(1.0) - cx + RCONST(0.5)*SQR(cx);
      uarray[offset  ] = C1_SCALE*cx*cy; 
      uarray[offset+1] = C2_SCALE*cx*cy;
      offset = offset + 2;
    }
  }
}

/* Print problem introduction */

static void PrintIntro(int npes, long int mudq, long int mldq,
		       long int mukeep, long int mlkeep)
{
  printf("\n2-species diurnal advection-diffusion problem\n");
  printf("  %d by %d mesh on %d processors\n", MX, MY, npes);
  printf("  Using CVBBDPRE preconditioner module\n");
  printf("    Difference-quotient half-bandwidths are");
  printf(" mudq = %ld,  mldq = %ld\n", mudq, mldq);
  printf("    Retained band block half-bandwidths are");
  printf(" mukeep = %ld,  mlkeep = %ld", mukeep, mlkeep);

  return;
}

/* Print current t, step count, order, stepsize, and sampled c1,c2 values */

static void PrintOutput(void *cvode_mem, int my_pe, MPI_Comm comm, 
                        N_Vector u, realtype t)
{
  int qu, flag, npelast;
  long int i0, i1, nst;
  realtype hu, *uarray, tempu[2];
  MPI_Status status;

  npelast = NPEX*NPEY - 1;
  uarray = NV_DATA_P(u);

  /* Send c1,c2 at top right mesh point to PE 0 */
  if (my_pe == npelast) {
    i0 = NVARS*MXSUB*MYSUB - 2;
    i1 = i0 + 1;
    if (npelast != 0)
      MPI_Send(&uarray[i0], 2, PVEC_REAL_MPI_TYPE, 0, 0, comm);
    else {
      tempu[0] = uarray[i0];
      tempu[1] = uarray[i1];
    }
  }

  /* On PE 0, receive c1,c2 at top right, then print performance data
     and sampled solution values */ 
  if (my_pe == 0) {
    if (npelast != 0)
      MPI_Recv(&tempu[0], 2, PVEC_REAL_MPI_TYPE, npelast, 0, comm, &status);
    flag = CVodeGetNumSteps(cvode_mem, &nst);
    check_flag(&flag, "CVodeGetNumSteps", 1, my_pe);
    flag = CVodeGetLastOrder(cvode_mem, &qu);
    check_flag(&flag, "CVodeGetLastOrder", 1, my_pe);
    flag = CVodeGetLastStep(cvode_mem, &hu);
    check_flag(&flag, "CVodeGetLastStep", 1, my_pe);
#if defined(SUNDIALS_EXTENDED_PRECISION)
    printf("t = %.2Le   no. steps = %ld   order = %d   stepsize = %.2Le\n",
           t, nst, qu, hu);
    printf("At bottom left:  c1, c2 = %12.3Le %12.3Le \n", uarray[0], uarray[1]);
    printf("At top right:    c1, c2 = %12.3Le %12.3Le \n\n", tempu[0], tempu[1]);
#elif defined(SUNDIALS_DOUBLE_PRECISION)
    printf("t = %.2le   no. steps = %ld   order = %d   stepsize = %.2le\n",
           t, nst, qu, hu);
    printf("At bottom left:  c1, c2 = %12.3le %12.3le \n", uarray[0], uarray[1]);
    printf("At top right:    c1, c2 = %12.3le %12.3le \n\n", tempu[0], tempu[1]);
#else
    printf("t = %.2e   no. steps = %ld   order = %d   stepsize = %.2e\n",
           t, nst, qu, hu);
    printf("At bottom left:  c1, c2 = %12.3e %12.3e \n", uarray[0], uarray[1]);
    printf("At top right:    c1, c2 = %12.3e %12.3e \n\n", tempu[0], tempu[1]);
#endif
  }
}

/* Print final statistics contained in iopt */

static void PrintFinalStats(void *cvode_mem)
{
  long int lenrw, leniw ;
  long int lenrwLS, leniwLS;
  long int lenrwBBDP, leniwBBDP, ngevalsBBDP;
  long int nst, nfe, nsetups, nni, ncfn, netf;
  long int nli, npe, nps, ncfl, nfeLS;
  int flag;

  flag = CVodeGetWorkSpace(cvode_mem, &lenrw, &leniw);
  check_flag(&flag, "CVodeGetWorkSpace", 1, 0);
  flag = CVodeGetNumSteps(cvode_mem, &nst);
  check_flag(&flag, "CVodeGetNumSteps", 1, 0);
  flag = CVodeGetNumRhsEvals(cvode_mem, &nfe);
  check_flag(&flag, "CVodeGetNumRhsEvals", 1, 0);
  flag = CVodeGetNumLinSolvSetups(cvode_mem, &nsetups);
  check_flag(&flag, "CVodeGetNumLinSolvSetups", 1, 0);
  flag = CVodeGetNumErrTestFails(cvode_mem, &netf);
  check_flag(&flag, "CVodeGetNumErrTestFails", 1, 0);
  flag = CVodeGetNumNonlinSolvIters(cvode_mem, &nni);
  check_flag(&flag, "CVodeGetNumNonlinSolvIters", 1, 0);
  flag = CVodeGetNumNonlinSolvConvFails(cvode_mem, &ncfn);
  check_flag(&flag, "CVodeGetNumNonlinSolvConvFails", 1, 0);

  flag = CVSpilsGetWorkSpace(cvode_mem, &lenrwLS, &leniwLS);
  check_flag(&flag, "CVSpilsGetWorkSpace", 1, 0);
  flag = CVSpilsGetNumLinIters(cvode_mem, &nli);
  check_flag(&flag, "CVSpilsGetNumLinIters", 1, 0);
  flag = CVSpilsGetNumPrecEvals(cvode_mem, &npe);
  check_flag(&flag, "CVSpilsGetNumPrecEvals", 1, 0);
  flag = CVSpilsGetNumPrecSolves(cvode_mem, &nps);
  check_flag(&flag, "CVSpilsGetNumPrecSolves", 1, 0);
  flag = CVSpilsGetNumConvFails(cvode_mem, &ncfl);
  check_flag(&flag, "CVSpilsGetNumConvFails", 1, 0);
  flag = CVSpilsGetNumRhsEvals(cvode_mem, &nfeLS);
  check_flag(&flag, "CVSpilsGetNumRhsEvals", 1, 0);

  printf("\nFinal Statistics: \n\n");
  printf("lenrw   = %5ld     leniw   = %5ld\n", lenrw, leniw);
  printf("lenrwls = %5ld     leniwls = %5ld\n", lenrwLS, leniwLS);
  printf("nst     = %5ld\n"                  , nst);
  printf("nfe     = %5ld     nfels   = %5ld\n"  , nfe, nfeLS);
  printf("nni     = %5ld     nli     = %5ld\n"  , nni, nli);
  printf("nsetups = %5ld     netf    = %5ld\n"  , nsetups, netf);
  printf("npe     = %5ld     nps     = %5ld\n"  , npe, nps);
  printf("ncfn    = %5ld     ncfl    = %5ld\n\n", ncfn, ncfl);

  flag = CVBBDPrecGetWorkSpace(cvode_mem, &lenrwBBDP, &leniwBBDP);
  check_flag(&flag, "CVBBDPrecGetWorkSpace", 1, 0);
  flag = CVBBDPrecGetNumGfnEvals(cvode_mem, &ngevalsBBDP);
  check_flag(&flag, "CVBBDPrecGetNumGfnEvals", 1, 0);
  printf("In CVBBDPRE: real/integer local work space sizes = %ld, %ld\n",
	 lenrwBBDP, leniwBBDP);  
  printf("             no. flocal evals. = %ld\n",ngevalsBBDP);
}
 
/* Routine to send boundary data to neighboring PEs */

static void BSend(MPI_Comm comm, 
                  int my_pe, int isubx, int isuby, 
                  long int dsizex, long int dsizey,
                  realtype uarray[])
{
  int i, ly;
  long int offsetu, offsetbuf;
  realtype bufleft[NVARS*MYSUB], bufright[NVARS*MYSUB];

  /* If isuby > 0, send data from bottom x-line of u */

  if (isuby != 0)
    MPI_Send(&uarray[0], dsizex, PVEC_REAL_MPI_TYPE, my_pe-NPEX, 0, comm);

  /* If isuby < NPEY-1, send data from top x-line of u */

  if (isuby != NPEY-1) {
    offsetu = (MYSUB-1)*dsizex;
    MPI_Send(&uarray[offsetu], dsizex, PVEC_REAL_MPI_TYPE, my_pe+NPEX, 0, comm);
  }

  /* If isubx > 0, send data from left y-line of u (via bufleft) */

  if (isubx != 0) {
    for (ly = 0; ly < MYSUB; ly++) {
      offsetbuf = ly*NVARS;
      offsetu = ly*dsizex;
      for (i = 0; i < NVARS; i++)
        bufleft[offsetbuf+i] = uarray[offsetu+i];
    }
    MPI_Send(&bufleft[0], dsizey, PVEC_REAL_MPI_TYPE, my_pe-1, 0, comm);   
  }

  /* If isubx < NPEX-1, send data from right y-line of u (via bufright) */

  if (isubx != NPEX-1) {
    for (ly = 0; ly < MYSUB; ly++) {
      offsetbuf = ly*NVARS;
      offsetu = offsetbuf*MXSUB + (MXSUB-1)*NVARS;
      for (i = 0; i < NVARS; i++)
        bufright[offsetbuf+i] = uarray[offsetu+i];
    }
    MPI_Send(&bufright[0], dsizey, PVEC_REAL_MPI_TYPE, my_pe+1, 0, comm);   
  }

}
 
/* Routine to start receiving boundary data from neighboring PEs.
   Notes:
   1) buffer should be able to hold 2*NVARS*MYSUB realtype entries, should be
   passed to both the BRecvPost and BRecvWait functions, and should not
   be manipulated between the two calls.
   2) request should have 4 entries, and should be passed in both calls also. */

static void BRecvPost(MPI_Comm comm, MPI_Request request[], 
                      int my_pe, int isubx, int isuby,
		      long int dsizex, long int dsizey,
		      realtype uext[], realtype buffer[])
{
  long int offsetue;
  /* Have bufleft and bufright use the same buffer */
  realtype *bufleft = buffer, *bufright = buffer+NVARS*MYSUB;

  /* If isuby > 0, receive data for bottom x-line of uext */
  if (isuby != 0)
    MPI_Irecv(&uext[NVARS], dsizex, PVEC_REAL_MPI_TYPE,
    					 my_pe-NPEX, 0, comm, &request[0]);

  /* If isuby < NPEY-1, receive data for top x-line of uext */
  if (isuby != NPEY-1) {
    offsetue = NVARS*(1 + (MYSUB+1)*(MXSUB+2));
    MPI_Irecv(&uext[offsetue], dsizex, PVEC_REAL_MPI_TYPE,
                                         my_pe+NPEX, 0, comm, &request[1]);
  }

  /* If isubx > 0, receive data for left y-line of uext (via bufleft) */
  if (isubx != 0) {
    MPI_Irecv(&bufleft[0], dsizey, PVEC_REAL_MPI_TYPE,
                                         my_pe-1, 0, comm, &request[2]);
  }

  /* If isubx < NPEX-1, receive data for right y-line of uext (via bufright) */
  if (isubx != NPEX-1) {
    MPI_Irecv(&bufright[0], dsizey, PVEC_REAL_MPI_TYPE,
                                         my_pe+1, 0, comm, &request[3]);
  }

}

/* Routine to finish receiving boundary data from neighboring PEs.
   Notes:
   1) buffer should be able to hold 2*NVARS*MYSUB realtype entries, should be
   passed to both the BRecvPost and BRecvWait functions, and should not
   be manipulated between the two calls.
   2) request should have 4 entries, and should be passed in both calls also. */

static void BRecvWait(MPI_Request request[], 
                      int isubx, int isuby, 
                      long int dsizex, realtype uext[],
                      realtype buffer[])
{
  int i, ly;
  long int dsizex2, offsetue, offsetbuf;
  realtype *bufleft = buffer, *bufright = buffer+NVARS*MYSUB;
  MPI_Status status;

  dsizex2 = dsizex + 2*NVARS;

  /* If isuby > 0, receive data for bottom x-line of uext */
  if (isuby != 0)
    MPI_Wait(&request[0],&status);

  /* If isuby < NPEY-1, receive data for top x-line of uext */
  if (isuby != NPEY-1)
    MPI_Wait(&request[1],&status);

  /* If isubx > 0, receive data for left y-line of uext (via bufleft) */
  if (isubx != 0) {
    MPI_Wait(&request[2],&status);

    /* Copy the buffer to uext */
    for (ly = 0; ly < MYSUB; ly++) {
      offsetbuf = ly*NVARS;
      offsetue = (ly+1)*dsizex2;
      for (i = 0; i < NVARS; i++)
        uext[offsetue+i] = bufleft[offsetbuf+i];
    }
  }

  /* If isubx < NPEX-1, receive data for right y-line of uext (via bufright) */
  if (isubx != NPEX-1) {
    MPI_Wait(&request[3],&status);

    /* Copy the buffer to uext */
    for (ly = 0; ly < MYSUB; ly++) {
      offsetbuf = ly*NVARS;
      offsetue = (ly+2)*dsizex2 - NVARS;
      for (i = 0; i < NVARS; i++)
	uext[offsetue+i] = bufright[offsetbuf+i];
    }
  }
}

/* fucomm routine.  This routine performs all inter-processor
   communication of data in u needed to calculate f.         */

static void fucomm(realtype t, N_Vector u, void *user_data)
{
  UserData data;
  realtype *uarray, *uext, buffer[2*NVARS*MYSUB];
  MPI_Comm comm;
  int my_pe, isubx, isuby;
  long int nvmxsub, nvmysub;
  MPI_Request request[4];

  data = (UserData) user_data;
  uarray = NV_DATA_P(u);

  /* Get comm, my_pe, subgrid indices, data sizes, extended array uext */

  comm = data->comm;  my_pe = data->my_pe;
  isubx = data->isubx;   isuby = data->isuby;
  nvmxsub = data->nvmxsub;
  nvmysub = NVARS*MYSUB;
  uext = data->uext;

  /* Start receiving boundary data from neighboring PEs */

  BRecvPost(comm, request, my_pe, isubx, isuby, nvmxsub, nvmysub, uext, buffer);

  /* Send data from boundary of local grid to neighboring PEs */

  BSend(comm, my_pe, isubx, isuby, nvmxsub, nvmysub, uarray);

  /* Finish receiving boundary data from neighboring PEs */

  BRecvWait(request, isubx, isuby, nvmxsub, uext, buffer);
}

/***************** Function called by the solver **************************/

/* f routine.  Evaluate f(t,y).  First call fucomm to do communication of 
   subgrid boundary data into uext.  Then calculate f by a call to flocal. */

static int f(realtype t, N_Vector u, N_Vector udot, void *user_data)
{
  UserData data;

  data = (UserData) user_data;

  /* Call fucomm to do inter-processor communication */

  fucomm (t, u, user_data);

  /* Call flocal to calculate all right-hand sides */

  flocal (data->Nlocal, t, u, udot, user_data);

  return(0);
}

/***************** Functions called by the CVBBDPRE module ****************/

/* flocal routine.  Compute f(t,y).  This routine assumes that all
   inter-processor communication of data needed to calculate f has already
   been done, and this data is in the work array uext.                    */

static int flocal(long int Nlocal, realtype t, N_Vector u,
                  N_Vector udot, void *user_data)
{
  realtype *uext;
  realtype q3, c1, c2, c1dn, c2dn, c1up, c2up, c1lt, c2lt;
  realtype c1rt, c2rt, cydn, cyup, hord1, hord2, horad1, horad2;
  realtype qq1, qq2, qq3, qq4, rkin1, rkin2, s, vertd1, vertd2, ydn, yup;
  realtype q4coef, dely, verdco, hordco, horaco;
  int i, lx, ly, jx, jy;
  int isubx, isuby;
  long int nvmxsub, nvmxsub2, offsetu, offsetue;
  UserData data;
  realtype *uarray, *duarray;

  uarray = NV_DATA_P(u);
  duarray = NV_DATA_P(udot);

  /* Get subgrid indices, array sizes, extended work array uext */

  data = (UserData) user_data;
  isubx = data->isubx;   isuby = data->isuby;
  nvmxsub = data->nvmxsub; nvmxsub2 = data->nvmxsub2;
  uext = data->uext;

  /* Copy local segment of u vector into the working extended array uext */

  offsetu = 0;
  offsetue = nvmxsub2 + NVARS;
  for (ly = 0; ly < MYSUB; ly++) {
    for (i = 0; i < nvmxsub; i++) uext[offsetue+i] = uarray[offsetu+i];
    offsetu = offsetu + nvmxsub;
    offsetue = offsetue + nvmxsub2;
  }

  /* To facilitate homogeneous Neumann boundary conditions, when this is
  a boundary PE, copy data from the first interior mesh line of u to uext */

  /* If isuby = 0, copy x-line 2 of u to uext */
  if (isuby == 0) {
    for (i = 0; i < nvmxsub; i++) uext[NVARS+i] = uarray[nvmxsub+i];
  }

  /* If isuby = NPEY-1, copy x-line MYSUB-1 of u to uext */
  if (isuby == NPEY-1) {
    offsetu = (MYSUB-2)*nvmxsub;
    offsetue = (MYSUB+1)*nvmxsub2 + NVARS;
    for (i = 0; i < nvmxsub; i++) uext[offsetue+i] = uarray[offsetu+i];
  }

  /* If isubx = 0, copy y-line 2 of u to uext */
  if (isubx == 0) {
    for (ly = 0; ly < MYSUB; ly++) {
      offsetu = ly*nvmxsub + NVARS;
      offsetue = (ly+1)*nvmxsub2;
      for (i = 0; i < NVARS; i++) uext[offsetue+i] = uarray[offsetu+i];
    }
  }

  /* If isubx = NPEX-1, copy y-line MXSUB-1 of u to uext */
  if (isubx == NPEX-1) {
    for (ly = 0; ly < MYSUB; ly++) {
      offsetu = (ly+1)*nvmxsub - 2*NVARS;
      offsetue = (ly+2)*nvmxsub2 - NVARS;
      for (i = 0; i < NVARS; i++) uext[offsetue+i] = uarray[offsetu+i];
    }
  }

  /* Make local copies of problem variables, for efficiency */

  dely = data->dy;
  verdco = data->vdco;
  hordco = data->hdco;
  horaco = data->haco;

  /* Set diurnal rate coefficients as functions of t, and save q4 in 
  data block for use by preconditioner evaluation routine            */

  s = sin((data->om)*t);
  if (s > ZERO) {
    q3 = EXP(-A3/s);
    q4coef = EXP(-A4/s);
  } else {
    q3 = ZERO;
    q4coef = ZERO;
  }
  data->q4 = q4coef;


  /* Loop over all grid points in local subgrid */

  for (ly = 0; ly < MYSUB; ly++) {

    jy = ly + isuby*MYSUB;

    /* Set vertical diffusion coefficients at jy +- 1/2 */

    ydn = YMIN + (jy - RCONST(0.5))*dely;
    yup = ydn + dely;
    cydn = verdco*EXP(RCONST(0.2)*ydn);
    cyup = verdco*EXP(RCONST(0.2)*yup);
    for (lx = 0; lx < MXSUB; lx++) {

      jx = lx + isubx*MXSUB;

      /* Extract c1 and c2, and set kinetic rate terms */

      offsetue = (lx+1)*NVARS + (ly+1)*nvmxsub2;
      c1 = uext[offsetue];
      c2 = uext[offsetue+1];
      qq1 = Q1*c1*C3;
      qq2 = Q2*c1*c2;
      qq3 = q3*C3;
      qq4 = q4coef*c2;
      rkin1 = -qq1 - qq2 + 2.0*qq3 + qq4;
      rkin2 = qq1 - qq2 - qq4;

      /* Set vertical diffusion terms */

      c1dn = uext[offsetue-nvmxsub2];
      c2dn = uext[offsetue-nvmxsub2+1];
      c1up = uext[offsetue+nvmxsub2];
      c2up = uext[offsetue+nvmxsub2+1];
      vertd1 = cyup*(c1up - c1) - cydn*(c1 - c1dn);
      vertd2 = cyup*(c2up - c2) - cydn*(c2 - c2dn);

      /* Set horizontal diffusion and advection terms */

      c1lt = uext[offsetue-2];
      c2lt = uext[offsetue-1];
      c1rt = uext[offsetue+2];
      c2rt = uext[offsetue+3];
      hord1 = hordco*(c1rt - RCONST(2.0)*c1 + c1lt);
      hord2 = hordco*(c2rt - RCONST(2.0)*c2 + c2lt);
      horad1 = horaco*(c1rt - c1lt);
      horad2 = horaco*(c2rt - c2lt);

      /* Load all terms into duarray */

      offsetu = lx*NVARS + ly*nvmxsub;
      duarray[offsetu]   = vertd1 + hord1 + horad1 + rkin1; 
      duarray[offsetu+1] = vertd2 + hord2 + horad2 + rkin2;
    }
  }

  return(0);
}

/* Check function return value...
     opt == 0 means SUNDIALS function allocates memory so check if
              returned NULL pointer
     opt == 1 means SUNDIALS function returns a flag so check if
              flag >= 0
     opt == 2 means function allocates memory so check if returned
              NULL pointer */

static int check_flag(void *flagvalue, char *funcname, int opt, int id)
{
  int *errflag;

  /* Check if SUNDIALS function returned NULL pointer - no memory allocated */
  if (opt == 0 && flagvalue == NULL) {
    fprintf(stderr, "\nSUNDIALS_ERROR(%d): %s() failed - returned NULL pointer\n\n",
            id, funcname);
    return(1); }

  /* Check if flag < 0 */
  else if (opt == 1) {
    errflag = (int *) flagvalue;
    if (*errflag < 0) {
      fprintf(stderr, "\nSUNDIALS_ERROR(%d): %s() failed with flag = %d\n\n",
              id, funcname, *errflag);
      return(1); }}

  /* Check if function returned NULL pointer - no memory allocated */
  else if (opt == 2 && flagvalue == NULL) {
    fprintf(stderr, "\nMEMORY_ERROR(%d): %s() failed - returned NULL pointer\n\n",
            id, funcname);
    return(1); }

  return(0);
}