This file is indexed.

/usr/include/ThePEG/Analysis/LWH/Histogram2D.h is in libthepeg-dev 1.8.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
// -*- C++ -*-
#ifndef LWH_Histogram2D_H
#define LWH_Histogram2D_H
//
// This is the declaration of the Histogram1D class.
//

#include "AIHistogram2D.h"
#include "ManagedObject.h"
#include "Axis.h"
#include "VariAxis.h"
#include <vector>
#include <stdexcept>

#include <iostream>

namespace LWH {

  using namespace AIDA;


  /**
   * User level interface to 1D Histogram.
   */
  class Histogram2D: public IHistogram2D, public ManagedObject {
    
  public:

    /** HistFactory is a friend. */
    friend class HistogramFactory;

  public:

    /**
     * Standard constructor.
     */
    Histogram2D(int nx, double lox, double upx,
		int ny, double loy, double upy)
      : xfax(new Axis(nx, lox, upx)), xvax(0), yfax(new Axis(ny, loy, upy)),
	sum(nx + 2, std::vector<int>(ny + 2)),
	sumw(nx + 2, std::vector<double>(ny + 2)),
	sumw2(nx + 2, std::vector<double>(ny + 2)),
	sumxw(nx + 2, std::vector<double>(ny + 2)),
	sumx2w(nx + 2, std::vector<double>(ny + 2)),
	sumyw(nx + 2, std::vector<double>(ny + 2)),
	sumy2w(nx + 2, std::vector<double>(ny + 2)) {
      xax = xfax;
      yax = yfax;
    }

    /**
     * Standard constructor for variable bin width.
     */
    Histogram2D(const std::vector<double> & xedges,
		const std::vector<double> & yedges)
      : xfax(0), xvax(new VariAxis(xedges)),
	yfax(0), yvax(new VariAxis(xedges)),
        sum(xedges.size() + 1, std::vector<int>(yedges.size() + 1)),
	sumw(xedges.size() + 1, std::vector<double>(yedges.size() + 1)),
	sumw2(xedges.size() + 1, std::vector<double>(yedges.size() + 1)),
        sumxw(xedges.size() + 1, std::vector<double>(yedges.size() + 1)),
	sumx2w(xedges.size() + 1, std::vector<double>(yedges.size() + 1)),
        sumyw(xedges.size() + 1, std::vector<double>(yedges.size() + 1)),
	sumy2w(xedges.size() + 1, std::vector<double>(yedges.size() + 1)) {
      xax = xvax;
      yax = yvax;
    }

    /**
     * Copy constructor.
     */
    Histogram2D(const Histogram2D & h)
      : IBaseHistogram(h), IHistogram(h), IHistogram2D(h), ManagedObject(h),
        xfax(0), xvax(0),  yfax(0), yvax(0),
	sum(h.sum), sumw(h.sumw), sumw2(h.sumw2),
        sumxw(h.sumxw), sumx2w(h.sumx2w) ,
        sumyw(h.sumyw), sumy2w(h.sumy2w){
      const VariAxis * hxvax = dynamic_cast<const VariAxis *>(h.xax);
      if ( hxvax ) xax = xvax = new VariAxis(*hxvax);
      else xax = xfax = new Axis(dynamic_cast<const Axis &>(*h.xax));
      const VariAxis * hyvax = dynamic_cast<const VariAxis *>(h.yax);
      if ( hyvax ) yax = yvax = new VariAxis(*hyvax);
      else yax = yfax = new Axis(dynamic_cast<const Axis &>(*h.yax));
  }

    /// Destructor.
    virtual ~Histogram2D() {
      delete xax;
      delete yax;
    }

    /**
     * Get the Histogram's title.
     * @return The Histogram's title.
     */
    std::string title() const {
      return theTitle;
    }

    /**
     * Get the Histogram's name.
     * @return The Histogram's name
     */
    std::string name() const {
      return title();
    }

    /**
     * Set the histogram title.
     * @param title The title.
     * @return false If title cannot be changed.
     */
    bool setTitle(const std::string & title) {
      theTitle = title;
      return true;
    }

    /**
     * Not implemented in LWH. will throw an exception.
     */
    IAnnotation & annotation() {
      throw std::runtime_error("LWH cannot handle annotations");
      return *anno;
    }

    /**
     * Not implemented in LWH. will throw an exception.
     */
    const IAnnotation & annotation() const {
      throw std::runtime_error("LWH cannot handle annotations");
      return *anno;
    }

    /**
     * Get the Histogram's dimension.
     * @return The Histogram's dimension.
     */
    int dimension() const {
      return 2;
    }

    /**
     * Reset the Histogram; as if just created.
     * @return false If something goes wrong.
     */
    bool reset() {
      const int nx = xax->bins() + 2;
      const int ny = yax->bins() + 2;
      sum = std::vector< std::vector<int> >(nx, std::vector<int>(ny));
      sumw = std::vector< std::vector<double> >(nx, std::vector<double>(ny));
      sumw2 = sumw;
      sumxw = sumw;
      sumx2w = sumw;
      sumyw = sumw;
      sumy2w = sumw;
      return true;
    }

    /**
     * Get the number of in-range entries in the Histogram.
     * @return The number of in-range entries.
     *
     */
    int entries() const {
      int si = 0;
      for ( int ix = 2; ix < xax->bins() + 2; ++ix )
	for ( int iy = 2; iy < yax->bins() + 2; ++iy ) si += sum[ix][iy];
      return si;
    }

    /**
     * Sum of the entries in all the IHistogram's bins,
     * i.e in-range bins, UNDERFLOW and OVERFLOW.
     * This is equivalent to the number of times the
     * method fill was invoked.
     * @return The sum of all the entries.
     */
    int allEntries() const {
      return entries() + extraEntries();
    }

    /**
     * Number of entries in the UNDERFLOW and OVERFLOW bins.
     * @return The number of entries outside the range of the IHistogram.
     */
    int extraEntries() const {
      int esum = sum[0][0] + sum[1][0] + sum[0][1] + sum[1][1];
      for ( int ix = 2; ix < xax->bins() + 2; ++ix )
	esum += sum[ix][0] + sum[ix][1];
      for ( int iy = 2; iy < yax->bins() + 2; ++iy )
	esum += sum[0][iy] + sum[1][iy];
      return esum;
    }

    /**
     * Number of equivalent entries,
     * i.e. <tt>SUM[ weight ] ^ 2 / SUM[ weight^2 ]</tt>
     * @return The number of equivalent entries.
     */
    double equivalentBinEntries() const {
      double sw = 0.0;
      double sw2 = 0.0;
      for ( int ix = 2; ix < xax->bins() + 2; ++ix )
	for ( int iy = 2; iy < yax->bins() + 2; ++iy ) {
	  sw += sumw[ix][iy];
	  sw2 += sumw2[ix][iy];
	}
      return sw2/(sw*sw);
    }

    /**
     * Sum of in-range bin heights in the IHistogram,
     * UNDERFLOW and OVERFLOW bins are excluded.
     * @return The sum of the in-range bins heights.
     *
     */
    double sumBinHeights() const {
      double sw = 0.0;
      for ( int ix = 2; ix < xax->bins() + 2; ++ix )
	for ( int iy = 2; iy < yax->bins() + 2; ++iy ) sw += sumw[ix][iy];
      return sw;
    }

    /**
     * Sum of the heights of all the IHistogram's bins,
     * i.e in-range bins, UNDERFLOW and OVERFLOW.
     * @return The sum of all the bins heights.
     */
    double sumAllBinHeights() const {
      return sumBinHeights() + sumExtraBinHeights();
    }

    /**
     * Sum of heights in the UNDERFLOW and OVERFLOW bins.
     * @return The sum of the heights of the out-of-range bins.
     */
    double sumExtraBinHeights() const {
      int esum = sumw[0][0] + sumw[1][0] + sumw[0][1] + sumw[1][1];
      for ( int ix = 2; ix < xax->bins() + 2; ++ix )
	esum += sumw[ix][0] + sumw[ix][1];
      for ( int iy = 2; iy < yax->bins() + 2; ++iy )
	esum += sumw[0][iy] + sumw[1][iy];
      return esum;
    }

    /**
     * Minimum height of the in-range bins,
     * i.e. not considering the UNDERFLOW and OVERFLOW bins.
     * @return The minimum height among the in-range bins.
     */
    double minBinHeight() const {
      double minw = sumw[2][2];
      for ( int ix = 2; ix < xax->bins() + 2; ++ix )
	for ( int iy = 2; iy < yax->bins() + 2; ++iy )
	  minw = std::min(minw, sumw[ix][iy]);
      return minw;
    }

    /**
     * Maximum height of the in-range bins,
     * i.e. not considering the UNDERFLOW and OVERFLOW bins.
     * @return The maximum height among the in-range bins.
     */
    double maxBinHeight() const{
      double maxw = sumw[2][2];
      for ( int ix = 2; ix < xax->bins() + 2; ++ix )
	for ( int iy = 2; iy < yax->bins() + 2; ++iy )
	  maxw = std::max(maxw, sumw[ix][iy]);
      return maxw;
    }

    /**
     * Fill the IHistogram1D with a value and the
     * corresponding weight.
     * @param x      The value to be filled in.
     * @param weight The corresponding weight (by default 1).
     * @return false If the weight is <0 or >1 (?).
     */
    bool fill(double x, double y, double weight = 1.) {
      int ix = xax->coordToIndex(x) + 2;
      int iy = yax->coordToIndex(y) + 2;
      ++sum[ix][iy];
      sumw[ix][iy] += weight;
      sumxw[ix][iy] += x*weight;
      sumx2w[ix][iy] += x*x*weight;
      sumyw[ix][iy] += y*weight;
      sumy2w[ix][iy] += y*y*weight;
      sumw2[ix][iy] += weight*weight;
      return weight >= 0 && weight <= 1;
    }

    /**
     * The weighted mean along the x-axis of a bin.
     * @param xindex The bin number (0...N-1) or OVERFLOW or UNDERFLOW.
     * @param yindex The bin number (0...N-1) or OVERFLOW or UNDERFLOW.
     * @return      The mean of the corresponding bin.
     */
    double binMeanX(int xindex, int yindex) const {
      int ix = xindex + 2;
      int iy = yindex + 2;
      return sumw[ix][iy] != 0.0? sumxw[ix][iy]/sumw[ix][iy]:
        ( xvax? xvax->binMidPoint(xindex): xfax->binMidPoint(xindex) );
    };

    /**
     * The weighted mean along the y-axis of a bin.
     * @param xindex The bin number (0...N-1) or OVERFLOW or UNDERFLOW.
     * @param yindex The bin number (0...N-1) or OVERFLOW or UNDERFLOW.
     * @return      The mean of the corresponding bin.
     */
    double binMeanY(int xindex, int yindex) const {
      int ix = xindex + 2;
      int iy = yindex + 2;
      return sumw[ix][iy] != 0.0? sumyw[ix][iy]/sumw[ix][iy]:
        ( yvax? yvax->binMidPoint(yindex): xfax->binMidPoint(yindex) );
    };

    /**
     * The weighted x-RMS of a bin.
     * @param xindex The bin number (0...N-1) or OVERFLOW or UNDERFLOW.
     * @param yindex The bin number (0...N-1) or OVERFLOW or UNDERFLOW.
     * @return      The RMS of the corresponding bin.
     */
    double binRmsX(int xindex, int yindex) const {
      int ix = xindex + 2;
      int iy = yindex + 2;
      return sumw[ix][iy] == 0.0 || sum[ix][iy] < 2? xax->binWidth(xindex):
        std::sqrt(std::max(sumw[ix][iy]*sumx2w[ix][iy] -
			   sumxw[ix][iy]*sumxw[ix][iy], 0.0))/sumw[ix][iy];
    };

    /**
     * The weighted y-RMS of a bin.
     * @param xindex The bin number (0...N-1) or OVERFLOW or UNDERFLOW.
     * @param yindex The bin number (0...N-1) or OVERFLOW or UNDERFLOW.
     * @return      The RMS of the corresponding bin.
     */
    double binRmsY(int xindex, int yindex) const {
      int ix = xindex + 2;
      int iy = yindex + 2;
      return sumw[ix][iy] == 0.0 || sum[ix][iy] < 2? yax->binWidth(yindex):
        std::sqrt(std::max(sumw[ix][iy]*sumy2w[ix][iy] -
			   sumyw[ix][iy]*sumyw[ix][iy], 0.0))/sumw[ix][iy];
    };

    /**
     * Number of entries in the corresponding bin (ie the number of
     * times fill was called for this bin).
     * @param index The bin number (0...N-1) or OVERFLOW or UNDERFLOW.
     * @return      The number of entries in the corresponding bin.
     */
    int binEntries(int xindex, int yindex) const {
      return sum[xindex + 2][yindex + 2];
    }

    /**
     * Sum of all the entries of the bins along a given x bin.
     * This is equivalent to <tt>projectionX().binEntries(index)</tt>.
     * @param index The x bin number (0...N-1) or OVERFLOW or UNDERFLOW.
     * @return      The number of entries in the corresponding set of bins. 
     *
     */
    virtual int binEntriesX(int index) const {
      int ret = 0;
      for ( int iy = 2; iy < yax->bins() + 2; ++iy )
	ret += sum[index + 2][iy];
      return ret;
    }

    /**
     * Sum of all the entries of the bins along a given y bin.
     * This is equivalent to <tt>projectionY().binEntries(index)</tt>.
     * @param index The y bin number (0...N-1) or OVERFLOW or UNDERFLOW.
     * @return      The number of entries in the corresponding set of bins. 
     *
     */
    virtual int binEntriesY(int index) const {
      int ret = 0;
      for ( int ix = 2; ix < xax->bins() + 2; ++ix )
	ret += sum[ix][index + 2];
      return ret;
    }

    /**
     * Total height of the corresponding bin (ie the sum of the weights
     * in this bin).
     * @param index The bin number (0...N-1) or OVERFLOW or UNDERFLOW.
     * @return      The height of the corresponding bin.
     */
    double binHeight(int xindex, int yindex) const {
      /// @todo While this is compatible with the reference AIDA
      /// implementation, it is not the bin height!
      return sumw[xindex + 2][yindex + 2];
    }

    /**
     * Sum of all the heights of the bins along a given x bin.
     * This is equivalent to <tt>projectionX().binHeight(index)</tt>.
     * @param index The x bin number (0...N-1) or OVERFLOW or UNDERFLOW.
     * @return      The sum of the heights in the corresponding set of bins. 
     *
     */
    virtual double binHeightX(int index) const {
      double ret = 0;
      for ( int iy = 2; iy < yax->bins() + 2; ++iy )
	ret += sumw[index + 2][iy];
      return ret;
    }

    /**
     * Sum of all the heights of the bins along a given y bin.
     * This is equivalent to <tt>projectionY().binHeight(index)</tt>.
     * @param index The y bin number (0...N-1) or OVERFLOW or UNDERFLOW.
     * @return      The sum of the heights in the corresponding set of bins. 
     *
     */
    virtual double binHeightY(int index) const {
      double ret = 0;
      for ( int ix = 2; ix < xax->bins() + 2; ++ix )
	ret += sumw[ix][index + 2];
      return ret;
    }

    /**
     * The error of a given bin.
     * @param index The bin number (0...N-1) or OVERFLOW or UNDERFLOW.
     * @return      The error on the corresponding bin.
     *
     */
    double binError(int xindex, int yindex) const {
      return std::sqrt(sumw2[xindex + 2][yindex + 2]);
    }

    /**
     * The mean of the IHistogram2D along the x axis.
     * @return The mean of the IHistogram2D along the x axis.
     *
     */
    double meanX() const {
      double s = 0.0;
      double sx = 0.0;
      for ( int ix = 2; ix < xax->bins() + 2; ++ix )
	for ( int iy = 2; iy < yax->bins() + 2; ++iy ) {
        s += sumw[ix][iy];
        sx += sumxw[ix][iy];
      }
      return s != 0.0? sx/s: 0.0;
    }

    /**
     * The mean of the IHistogram2D along the y axis.
     * @return The mean of the IHistogram2D along the y axis.
     *
     */
    double meanY() const {
      double s = 0.0;
      double sy = 0.0;
      for ( int ix = 2; ix < xax->bins() + 2; ++ix )
	for ( int iy = 2; iy < yax->bins() + 2; ++iy ) {
        s += sumw[ix][iy];
        sy += sumyw[ix][iy];
      }
      return s != 0.0? sy/s: 0.0;
    }

    /**
     * The RMS of the IHistogram2D along the x axis.
     * @return The RMS if the IHistogram2D along the x axis.
     *
     */
    double rmsX() const {
      double s = 0.0;
      double sx = 0.0;
      double sx2 = 0.0;
      for ( int ix = 2; ix < xax->bins() + 2; ++ix )
	for ( int iy = 2; iy < yax->bins() + 2; ++iy ) {
        s += sumw[ix][iy];
        sx += sumxw[ix][iy];
        sx2 += sumx2w[ix][iy];
      }
      return s != 0.0? std::sqrt(std::max(s*sx2 - sx*sx, 0.0))/s:
        xax->upperEdge() - xax->lowerEdge();
    }

    /**
     * The RMS of the IHistogram2D along the x axis.
     * @return The RMS if the IHistogram2D along the x axis.
     *
     */
    double rmsY() const {
      double s = 0.0;
      double sy = 0.0;
      double sy2 = 0.0;
      for ( int ix = 2; ix < xax->bins() + 2; ++ix )
	for ( int iy = 2; iy < yax->bins() + 2; ++iy ) {
        s += sumw[ix][iy];
        sy += sumyw[ix][iy];
        sy2 += sumy2w[ix][iy];
      }
      return s != 0.0? std::sqrt(std::max(s*sy2 - sy*sy, 0.0))/s:
        yax->upperEdge() - yax->lowerEdge();
    }

    /** The weights. */
    double getSumW(int xindex, int yindex) const {
        return sumw[xindex + 2][yindex + 2];
    }

    /** The squared weights. */
    double getSumW2(int xindex, int yindex) const {
        return sumw2[xindex + 2][yindex + 2];
    }

    /** The weighted x-values. */
    double getSumXW(int xindex, int yindex) const {
        return sumxw[xindex + 2][yindex + 2];
    }

    /** The weighted x-square-values. */
    double getSumX2W(int xindex, int yindex) const {
        return sumx2w[xindex + 2][yindex + 2];
    }
    
    /** The weighted x-values. */
    double getSumYW(int xindex, int yindex) const {
        return sumyw[xindex + 2][yindex + 2];
    }

    /** The weighted x-square-values. */
    double getSumY2W(int xindex, int yindex) const {
        return sumy2w[xindex + 2][yindex + 2];
    }
    
    /**
     * Get the x axis of the IHistogram2D.
     * @return The x coordinate IAxis.
     */
    const IAxis & xAxis() const {
      return *xax;
    }

    /**
     * Get the y axis of the IHistogram2D.
     * @return The y coordinate IAxis.
     */
    const IAxis & yAxis() const {
      return *yax;
    }

    /**
     * Get the bin number corresponding to a given coordinate along the
     * x axis.  This is a convenience method, equivalent to
     * <tt>axis().coordToIndex(coord)</tt>.
     * @param coord The coordinalte along the x axis.
     * @return      The corresponding bin number.
     */
    int coordToIndexX(double coord) const {
      return xax->coordToIndex(coord);
    }

    /**
     * Get the bin number corresponding to a given coordinate along the
     * y axis.  This is a convenience method, equivalent to
     * <tt>axis().coordToIndex(coord)</tt>.
     * @param coord The coordinalte along the y axis.
     * @return      The corresponding bin number.
     */
    int coordToIndexY(double coord) const {
      return yax->coordToIndex(coord);
    }

    /**
     * Add to this Histogram2D the contents of another IHistogram2D.
     * @param h The Histogram2D to be added to this IHistogram2D.
     * @return false If the IHistogram1Ds binnings are incompatible.
     */
    bool add(const Histogram2D & h) {
      if ( xax->upperEdge() != h.xax->upperEdge() ||
	   xax->lowerEdge() != h.xax->lowerEdge() ||
	   xax->bins() != h.xax->bins() ) return false;
      if ( yax->upperEdge() != h.yax->upperEdge() ||
	   yax->lowerEdge() != h.yax->lowerEdge() ||
	   yax->bins() != h.yax->bins() ) return false;
      for ( int ix = 0; ix < xax->bins() + 2; ++ix )
	for ( int iy = 0; iy < yax->bins() + 2; ++iy ) {
	  sum[ix][iy] += h.sum[ix][iy];
	  sumw[ix][iy] += h.sumw[ix][iy];
	  sumxw[ix][iy] += h.sumxw[ix][iy];
	  sumx2w[ix][iy] += h.sumx2w[ix][iy];
	  sumyw[ix][iy] += h.sumyw[ix][iy];
	  sumy2w[ix][iy] += h.sumy2w[ix][iy];
	  sumw2[ix][iy] += h.sumw2[ix][iy];
	}
      return true;
    }

    /**
     * Add to this IHistogram1D the contents of another IHistogram1D.
     * @param hist The IHistogram1D to be added to this IHistogram1D.
     * @return false If the IHistogram1Ds binnings are incompatible.
     */
    bool add(const IHistogram2D & hist) {
      return add(dynamic_cast<const Histogram2D &>(hist));
    }

    /**
     * Scale the contents of this histogram with the given factor.
     * @param s the scaling factor to use.
     */
    bool scale(double s) {
      for ( int ix = 0; ix < xax->bins() + 2; ++ix )
	for ( int iy = 0; iy < yax->bins() + 2; ++iy ) {
	  sumw[ix][iy] *= s;
	  sumxw[ix][iy] *= s;
	  sumx2w[ix][iy] *= s;
	  sumyw[ix][iy] *= s;
	  sumy2w[ix][iy] *= s;
	  sumw2[ix][iy] *= s*s;
      }
      return true;
    }

    /**
     * Scale the given histogram so that the integral over all bins
     * (including overflow) gives \a intg. This function also corrects
     * for the bin-widths, which means that it should only be run once
     * for each histogram. Further rescaling must be done with the
     * scale(double) function.
     */
    void normalize(double intg) {
      double oldintg = sumAllBinHeights();
      if ( oldintg == 0.0 ) return;
      for ( int ix = 0; ix < xax->bins() + 2; ++ix )
	for ( int iy = 0; iy < yax->bins() + 2; ++iy ) {
	  double fac = intg/oldintg;
	  if ( ix >= 2 && iy >= 2 )
	    fac /= (xax->binUpperEdge(ix - 2) - xax->binLowerEdge(ix - 2))*
	      (yax->binUpperEdge(iy - 2) - yax->binLowerEdge(iy - 2));
        sumw[ix][iy] *= fac;
        sumxw[ix][iy] *= fac;
        sumx2w[ix][iy] *= fac;
        sumyw[ix][iy] *= fac;
        sumy2w[ix][iy] *= fac;
        sumw2[ix][iy] *= fac*fac;
      }
    }

    /**
     * Return the integral over the histogram bins assuming it has been
     * normalize()d.
     */
    // double integral() const {
    //   double intg = sumw[0] + sumw[1];
    //   for ( int i = 2; i < ax->bins() + 2; ++i )

    // is this right? Leave out bin width factor?

    //     intg += sumw[ix][iy]*(ax->binUpperEdge(i - 2) - ax->binLowerEdge(i - 2));
    //   return intg;
    // }

    /**
     * Not implemented in LWH.
     * @return null pointer always.
     */
    void * cast(const std::string &) const {
      return 0;
    }

    /**
     * Write out the histogram in the AIDA xml format.
     */
    bool writeXML(std::ostream & os, std::string path, std::string name) {
      //std::cout << "Writing out histogram " << name << " in AIDA file format!" << std::endl;
      os << "  <histogram2d name=\"" << name
         << "\"\n    title=\"" << title()
         << "\" path=\"" << path
         << "\">\n    <axis max=\"" << xax->upperEdge()
         << "\" numberOfBins=\"" << xax->bins()
         << "\" min=\"" << xax->lowerEdge()
         << "\" direction=\"x\"";
      if ( xvax ) {
        os << ">\n";
        for ( int i = 0, N = xax->bins() - 1; i < N; ++i )
          os << "      <binBorder value=\"" << xax->binUpperEdge(i) << "\"/>\n";
        os << "    </axis>\n";
      } else {
        os << "/>\n";
      }
      os << "    <axis max=\"" << yax->upperEdge()
         << "\" numberOfBins=\"" << yax->bins()
         << "\" min=\"" << yax->lowerEdge()
         << "\" direction=\"y\"";
      if ( yvax ) {
        os << ">\n";
        for ( int i = 0, N = yax->bins() - 1; i < N; ++i )
          os << "      <binBorder value=\"" << yax->binUpperEdge(i) << "\"/>\n";
        os << "    </axis>\n";
      } else {
        os << "/>\n";
      }
      os << "    <statistics entries=\"" << entries()
         << "\">\n      <statistic mean=\"" << meanX()
         << "\" direction=\"x\"\n        rms=\"" << rmsX()
         << "\"/>\n    </statistics>\n      <statistic mean=\"" << meanY()
         << "\" direction=\"y\"\n        rms=\"" << rmsY()
         << "\"/>\n    </statistics>\n    <data2d>\n";
      for ( int ix = 0; ix < xax->bins() + 2; ++ix )
	for ( int iy = 0; iy < yax->bins() + 2; ++iy )
	  if ( sum[ix][iy] ) {
	    os << "      <bin2d binNumX=\"";
	    if ( ix == 0 ) os << "UNDERFLOW";
	    else if ( ix == 1 ) os << "OVERFLOW";
	    else os << ix - 2;
	    os << "\" binNumY=\"";
	    if ( iy == 0 ) os << "UNDERFLOW";
	    else if ( iy == 1 ) os << "OVERFLOW";
	    else os << iy - 2;
	    os << "\" entries=\"" << sum[ix][iy]
	       << "\" height=\"" << sumw[ix][iy]
	       << "\"\n        error=\"" << std::sqrt(sumw2[ix][iy])
	       << "\" error2=\"" << sumw2[ix][iy]
	       << "\"\n        weightedMeanX=\"" << binMeanX(ix - 2, iy - 2)
	       << "\" weightedRmsX=\"" << binRmsX(ix - 2, iy - 2)
	       << "\"\n        weightedMeanY=\"" << binMeanY(ix - 2, iy - 2)
	       << "\" weightedRmsY=\"" << binRmsY(ix - 2, iy - 2)
	       << "\"/>\n";
        }
      os << "    </data2d>\n  </histogram2d>" << std::endl;
      return true;
    }


    /**
     * Write out the histogram in a flat text file suitable for
     * eg. gnuplot to read. The coloums are layed out as 'x w w2 n'.
     */
    bool writeFLAT(std::ostream & os, std::string path, std::string name) {
      os << "#2D " << path << "/" << name << " " << xax->lowerEdge()
         << " " << xax->bins() << " " << xax->upperEdge() << " "
	 << yax->lowerEdge() << " " << yax->bins() << " " << yax->upperEdge()
         << " \"" << title() << "\"" << std::endl;
      for ( int ix = 2; ix < xax->bins() + 2; ++ix ) {
	for ( int iy = 2; iy < yax->bins() + 2; ++iy )
	  os << 0.5*(xax->binLowerEdge(ix - 2)+xax->binUpperEdge(ix - 2)) << " "
	     << 0.5*(yax->binLowerEdge(iy - 2)+yax->binUpperEdge(iy - 2))
	     << " " << sumw[ix][iy] << " " << sqrt(sumw2[ix][iy])
	     << " " << sum[ix][iy] << std::endl;
	os << std::endl;
      }
      os << std::endl;
      return true;
    }



   #ifdef HAVE_ROOT
    /**
     * Write out the histogram in Root file format.
     */
    //bool writeROOT(std::ostream & os, std::string path, std::string name) {
    bool writeROOT(TFile* file, std::string path, std::string name) {

      //std::cout << "Writing out histogram " << name.c_str() << " in ROOT file format" << std::endl;

      TH1D* hist1d;
      int nbins;
      if (!vax || vax->isFixedBinning() ) {//equidistant binning (easier case)
        nbins = ax->bins();
        hist1d = new TH1D(name.c_str(), title().c_str(), nbins, ax->lowerEdge(), ax->upperEdge());
      }
      else {
        nbins = vax->bins();
        double* bins = new double[nbins+1];
        for (int i=0; i<nbins; ++i) {
      bins[ix][iy] = vax->binEdges(i).first;
        }
        bins[nbins] = vax->binEdges(nbins-1).second; //take last bin right border
        hist1d = new TH1D(name.c_str(), title().c_str(), nbins, bins);
        delete [] bins;
      }


      double entries = 0;
      for ( int i = 0; i < nbins + 2; ++i ) {
        if ( sum[ix][iy] ) {
          //i==0: underflow->RootBin(0), i==1: overflow->RootBin(NBins+1)
          entries = entries + sum[ix][iy];
          int j=i;
          if (i==0) j=0; //underflow
          else if (i==1) j=nbins+1; //overflow
          if (i>=2) j=i-1; //normal bin entries
          hist1d->SetBinContent(j, sumw[ix][iy]);
          hist1d->SetBinError(j, sqrt(sumw2[ix][iy]));
          //hist1d->Fill(binMean(i), sumw[ix][iy]);
        }
      }

      hist1d->Sumw2();
      hist1d->SetEntries(entries);

      std::string DirName; //remove preceding slash from directory name, else ROOT error
      for (unsigned int i=1; i<path.size(); ++i) DirName += path[i];
      if (!file->Get(DirName.c_str())) file->mkdir(DirName.c_str());
      file->cd(DirName.c_str());
      hist1d->Write();

      delete hist1d;

      return true;
    }

   #endif



  private:

    /** The title */
    std::string theTitle;

    /** The axis. */
    IAxis * xax;

    /** Pointer (possibly null) to a axis with fixed bin width. */
    Axis * xfax;

    /** Pointer (possibly null) to a axis with fixed bin width. */
    VariAxis * xvax;

    /** The axis. */
    IAxis * yax;

    /** Pointer (possibly null) to a axis with fixed bin width. */
    Axis * yfax;

    /** Pointer (possibly null) to a axis with fixed bin width. */
    VariAxis * yvax;

    /** The counts. */
    std::vector< std::vector<int> > sum;

    /** The weights. */
    std::vector< std::vector<double> > sumw;

    /** The squared weights. */
    std::vector< std::vector<double> > sumw2;

    /** The weighted x-values. */
    std::vector< std::vector<double> > sumxw;

    /** The weighted x-square-values. */
    std::vector< std::vector<double> > sumx2w;

    /** The weighted y-values. */
    std::vector< std::vector<double> > sumyw;

    /** The weighted y-square-values. */
    std::vector< std::vector<double> > sumy2w;

    /** dummy pointer to non-existen annotation. */
    IAnnotation * anno;

  };

}

#endif /* LWH_Histogram1D_H */