/usr/include/ThePEG/MatrixElement/MEGroup.h is in libthepeg-dev 1.8.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 | // -*- C++ -*-
//
// MEGroup.h is a part of ThePEG - Toolkit for HEP Event Generation
// Copyright (C) 1999-2007 Leif Lonnblad
// Copyright (C) 2009-2010 Simon Platzer
//
// ThePEG is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
#ifndef ThePEG_MEGroup_H
#define ThePEG_MEGroup_H
// This is the declaration of the MEGroup class.
#include "ThePEG/MatrixElement/MEBase.h"
#include "ThePEG/Handlers/StdDependentXComb.fh"
#include "ThePEG/Cuts/Cuts.fh"
#include "MEGroup.fh"
namespace ThePEG {
/**
* The MEGroup class represents a 'head' matrix element
* in association with a group of dependent matrix elements.
* It basically acts as a wrapper around its head matrix element
* however supplying additional information to the corresponding
* StdXCombGroup object.
*
* @see StdXCombGroup
* @see StdDependentXComb
*
*/
class MEGroup: public MEBase {
public:
/** @name Standard constructors and destructors. */
//@{
/**
* Default constructor.
*/
MEGroup();
/**
* Destructor.
*/
virtual ~MEGroup();
//@}
public:
/** @name Virtual functions from MEBase. */
//@{
/**
* Return the order in \f$\alpha_S\f$ in which this matrix element
* is given.
*/
virtual unsigned int orderInAlphaS() const { return head()->orderInAlphaS(); }
/**
* Return the order in \f$\alpha_{EM}\f$ in which this matrix
* element is given. Returns 0.
*/
virtual unsigned int orderInAlphaEW() const { return head()->orderInAlphaEW(); }
/**
* Return the matrix element for the kinematical configuation
* previously provided by the last call to setKinematics(), suitably
* scaled by sHat() to give a dimension-less number.
*/
virtual double me2() const { return head()->me2(); }
/**
* Return the scale associated with the phase space point provided
* by the last call to setKinematics().
*/
virtual Energy2 scale() const { return head()->scale(); }
/**
* Return the value of \f$\alpha_S\f$ associated with the phase
* space point provided by the last call to setKinematics(). This
* versions returns SM().alphaS(scale()).
*/
virtual double alphaS() const { return head()->alphaS(); }
/**
* Return the value of \f$\alpha_EM\f$ associated with the phase
* space point provided by the last call to setKinematics(). This
* versions returns SM().alphaEM(scale()).
*/
virtual double alphaEM() const { return head()->alphaEM(); }
/**
* Set the typed and momenta of the incoming and outgoing partons to
* be used in subsequent calls to me() and colourGeometries()
* according to the associated XComb object. If the function is
* overridden in a sub class the new function must call the base
* class one first.
*/
virtual void setKinematics();
/**
* construct the spin information for the interaction
*/
virtual void constructVertex(tSubProPtr sub) { head()->constructVertex(sub); }
/**
* The number of internal degreed of freedom used in the matrix
* element. This default version returns 0;
*/
virtual int nDim() const { return theNDim; }
/**
* Generate internal degrees of freedom given nDim() uniform random
* numbers in the interval ]0,1[. To help the phase space generator,
* the 'dSigHatDR' should be a smooth function of these numbers,
* although this is not strictly necessary. The return value should
* be true of the generation succeeded. If so the generated momenta
* should be stored in the meMomenta() vector.
*/
virtual bool generateKinematics(const double * r);
/**
* Return true, if this matrix element expects
* the incoming partons in their center-of-mass system
*/
virtual bool wantCMS () const { return head()->wantCMS(); }
/**
* Return the matrix element squared differential in the variables
* given by the last call to generateKinematics().
*/
virtual CrossSection dSigHatDR() const { return head()->dSigHatDR(); }
/**
* Return true, if this matrix element will generate momenta for the
* incoming partons itself. The matrix element is required to store
* the incoming parton momenta in meMomenta()[0,1]. No mapping in
* tau and y is performed by the PartonExtractor object, if a
* derived class returns true here. The phase space jacobian is to
* include a factor 1/(x1 x2).
*/
virtual bool haveX1X2() const { return head()->haveX1X2(); }
/**
* Return true, if this matrix element provides the PDF
* weight for the first incoming parton itself.
*/
virtual bool havePDFWeight1 () const { return head()->havePDFWeight1(); }
/**
* Return true, if this matrix element provides the PDF
* weight for the second incoming parton itself.
*/
virtual bool havePDFWeight2 () const { return head()->havePDFWeight2(); }
/**
* Return true, if the XComb steering this matrix element
* should keep track of the random numbers used to generate
* the last phase space point
*/
virtual bool keepRandomNumbers() const { return head()->keepRandomNumbers(); }
/**
* Comlete a SubProcess object using the internal degrees of freedom
* generated in the last generateKinematics() (and possible other
* degrees of freedom which was intergated over in dSigHatDR(). This
* default version does nothing. Will be made purely virtual in the
* future.
*/
virtual void generateSubCollision(SubProcess & sub) { head()->generateSubCollision(sub); }
/**
* Clear the information previously provided by a call to
* setKinematics(...).
*/
virtual void clearKinematics();
/**
* Add all possible diagrams with the add() function.
*/
virtual void getDiagrams() const {
head()->diagrams();
useDiagrams(head());
}
/**
* Return true, if this matrix element does not want to
* make use of mirroring processes; in this case all
* possible partonic subprocesses with a fixed assignment
* of incoming particles need to be provided through the diagrams
* added with the add(...) method.
*/
virtual bool noMirror () const { return head()->noMirror(); }
/**
* Return a Selector with possible colour geometries for the selected
* diagram weighted by their relative probabilities.
*/
virtual Selector<const ColourLines *>
colourGeometries(tcDiagPtr diag) const { return head()->colourGeometries(diag); }
/**
* Select a ColpurLines geometry. The default version returns a
* colour geometry selected among the ones returned from
* colourGeometries(tcDiagPtr).
*/
virtual const ColourLines &
selectColourGeometry(tcDiagPtr diag) const { return head()->selectColourGeometry(diag); }
/**
* With the information previously supplied with the
* setKinematics(...) method, a derived class may optionally
* override this method to weight the given diagrams with their
* (although certainly not physical) relative probabilities.
*/
virtual Selector<DiagramIndex> diagrams(const DiagramVector & dv) const {
return head()->diagrams(dv);
}
/**
* Select a diagram. Default version uses diagrams(const
* DiagramVector &) to select a diagram according to the
* weights. This is the only method used that should be outside of
* MEBase.
*/
virtual DiagramIndex diagram(const DiagramVector & dv) const {
DiagramIndex res = head()->diagram(dv);
return res;
}
/**
* Set the XComb object to be used in the next call to
* generateKinematics() and dSigHatDR().
*/
virtual void setXComb(tStdXCombPtr);
/**
* Inform this matrix element that a new phase space
* point is about to be generated, so all caches should
* be flushed.
*/
virtual void flushCaches();
/**
* Collect information on the last evaluated phasespace
* point for verification or debugging purposes. This
* only called, if the StdXCombGroup did accumulate
* a non-zero cross section from this ME group.
*/
virtual void lastEventStatistics() {}
//@}
public:
/**
* Return the head matrix element.
*/
tMEPtr head() const { return theHead; }
/**
* Visit the dependent matrix elements
*/
const MEVector& dependent() const { return theDependent; }
/**
* Set the head matrix element.
*/
void head(tMEPtr me) { theHead = me; }
/**
* Access the dependent matrix elements
*/
MEVector& dependent() { return theDependent; }
/**
* Return the random number offset to access the random
* numbers provided for the given matrix element to generate
* dependent kinematics.
*/
int dependentOffset(tMEPtr dep) const;
/**
* Create an StdDependentXComb object to be used
* for the given process steered bythe head object and
* dependent matrix element.
*/
StdDependentXCombPtr makeDependentXComb (tStdXCombPtr xcHead,
const cPDVector& proc,
tMEPtr depME,
const PartonPairVec& allPBins) const;
/**
* Return true, if SubProcessGroups should be
* setup from this MEGroup. If not, a single SubProcess
* is constructed from the data provided by the
* head matrix element.
*/
virtual bool subProcessGroups() const { return true; }
/**
* Return true for MC summation of dependent
* matrix elements, if feasible.
*/
virtual bool mcSumDependent() const { return false; }
/**
* Return a pointer to the dependent xcomb object selected
* if mcSumDependent returned true.
*/
tStdDependentXCombPtr lastDependentXComb() const { return theLastDependentXComb; }
protected:
/**
* Set a pointer to the dependent xcomb object selected
* if mcSumDependent returned true.
*/
void lastDependentXComb(tStdDependentXCombPtr xc) { theLastDependentXComb = xc; }
public:
/**
* Return true, if the same additional random numbers
* should be presented to any of the dependent
* matrix elements.
*/
virtual bool uniformAdditional() const = 0;
/**
* Given a process from the head matrix element,
* return a list of diagrams which should be considered for
* the given dependent matrix element.
*/
virtual MEBase::DiagramVector dependentDiagrams (const cPDVector& proc,
tMEPtr depME) const = 0;
public:
/** @name Functions used by the persistent I/O system. */
//@{
/**
* Function used to write out object persistently.
* @param os the persistent output stream written to.
*/
void persistentOutput(PersistentOStream & os) const;
/**
* Function used to read in object persistently.
* @param is the persistent input stream read from.
* @param version the version number of the object when written.
*/
void persistentInput(PersistentIStream & is, int version);
//@}
/**
* Standard Init function used to initialize the interfaces.
*/
static void Init();
protected:
/** @name Standard Interfaced functions. */
//@{
/**
* Initialize this object after the setup phase before saving an
* EventGenerator to disk.
* @throws InitException if object could not be initialized properly.
*/
virtual void doinit();
/**
* Rebind pointer to other Interfaced objects. Called in the setup phase
* after all objects used in an EventGenerator has been cloned so that
* the pointers will refer to the cloned objects afterwards.
* @param trans a TranslationMap relating the original objects to
* their respective clones.
* @throws RebindException if no cloned object was found for a given
* pointer.
*/
virtual void rebind(const TranslationMap & trans);
/**
* Return a vector of all pointers to Interfaced objects used in this
* object.
* @return a vector of pointers.
*/
virtual IVector getReferences();
//@}
private:
/**
* The head matrix element.
*/
MEPtr theHead;
/**
* The dependent matrix elements.
*/
MEVector theDependent;
/**
* Offsets to access additional random numbers
* required by the dependent matrix elements.
*/
map<tMEPtr,int> theNDimMap;
/**
* The total number of random numbers required.
*/
int theNDim;
/**
* A pointer to the dependent xcomb object selected
* if mcSumDependent returned true.
*/
tStdDependentXCombPtr theLastDependentXComb;
private:
/**
* Describe a class with persistent data.
*/
static AbstractClassDescription<MEGroup> initMEGroup;
/**
* Private and non-existent assignment operator.
*/
MEGroup & operator=(const MEGroup &);
};
}
namespace ThePEG {
/** @cond TRAITSPECIALIZATIONS */
/**
* This template specialization informs ThePEG about the base class of
* MEGroup.
*/
template <>
struct BaseClassTrait<MEGroup,1> {
/** Typedef of the base class of MEGroup. */
typedef MEBase NthBase;
};
/**
* This template specialization informs ThePEG about the name of the
* MEGroup class.
*/
template <>
struct ClassTraits<MEGroup>: public ClassTraitsBase<MEGroup> {
/** Return the class name. */
static string className() { return "ThePEG::MEGroup"; }
};
/** @endcond */
}
#endif /* ThePEG_MEGroup_H */
|